Stock closing price prediction based on sentiment analysis and LSTM

[1]  Yanfei Li,et al.  Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM , 2018 .

[2]  Tie-Yan Liu,et al.  Listening to Chaotic Whispers: A Deep Learning Framework for News-oriented Stock Trend Prediction , 2017, WSDM.

[3]  Thomas Fischer,et al.  Deep learning with long short-term memory networks for financial market predictions , 2017, Eur. J. Oper. Res..

[4]  N. Sharma,et al.  Combining of random forest estimates using LSboost for stock market index prediction , 2017, 2017 2nd International Conference for Convergence in Technology (I2CT).

[5]  Kun Guo,et al.  Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market , 2017 .

[6]  Tiehang Duan,et al.  Auto Regressive Dynamic Bayesian Network and Its Application in Stock Market Inference , 2016, AIAI.

[7]  Adriano Lorena Inácio de Oliveira,et al.  Expert Systems With Applications , 2022 .

[8]  Lei Wu,et al.  Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method , 2016 .

[9]  Ke Xu,et al.  Can Online Emotions Predict the Stock Market in China? , 2016, WISE.

[10]  Yue Zhang,et al.  Deep Learning for Event-Driven Stock Prediction , 2015, IJCAI.

[11]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[12]  Yunpeng Wang,et al.  Long short-term memory neural network for traffic speed prediction using remote microwave sensor data , 2015 .

[13]  Brigitte Chebel-Morello,et al.  Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals , 2015 .

[14]  U. Rajendra Acharya,et al.  Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals , 2015, Entropy.

[15]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[16]  Peter A. Gloor,et al.  Nowcasting the Bitcoin Market with Twitter Signals , 2014, ArXiv.

[17]  Dominique Zosso,et al.  Variational Mode Decomposition , 2014, IEEE Transactions on Signal Processing.

[18]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[19]  Wei Wei,et al.  Correlating S&P 500 stocks with Twitter data , 2012, HotSocial '12.

[20]  Xiaolong Wang,et al.  A novel text mining approach to financial time series forecasting , 2012, Neurocomputing.

[21]  Shom Prasad Das,et al.  Support Vector Machines for Prediction of Futures Prices in Indian Stock Market , 2012 .

[22]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[23]  Da-yong Zhang,et al.  Stock market forecasting model based on a hybrid ARMA and support vector machines , 2008, 2008 International Conference on Management Science and Engineering 15th Annual Conference Proceedings.

[24]  S. Bressler,et al.  Granger Causality: Basic Theory and Application to Neuroscience , 2006, q-bio/0608035.

[25]  Rob J Hyndman,et al.  25 Years of Iif Time Series Forecasting: A Selective Review , 2005 .

[26]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[27]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[28]  Malcolm P. Baker,et al.  Investor Sentiment and the Cross-Section of Stock Returns , 2003 .

[29]  P. D. McFadden,et al.  A review of time-frequency methods for structural vibration analysis , 2003 .

[30]  J. Contreras,et al.  ARIMA Models to Predict Next-Day Electricity Prices , 2002, IEEE Power Engineering Review.

[31]  E. De Tuglie,et al.  Transi'lent Security Idspatch for the Concurrent Optiization of Lural Postulated Contingencies , 2002, IEEE Power Engineering Review.

[32]  S Roh,et al.  Production of HanWoo (Bos taurus coreanae) fetuses following interbreed somatic cell nuclear transfer. , 2001, The Journal of veterinary medical science.

[33]  Werner Antweiler,et al.  Is All that Talk Just Noise? The Information Content of Internet Stock Message Boards , 2001 .

[34]  J. Dayhoff,et al.  Artificial neural networks , 2001, Cancer.

[35]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[36]  Armand M. Makowski,et al.  Modeling video traffic using M/G/∞ input processes: a compromise between Markovian and LRD models , 1998, IEEE J. Sel. Areas Commun..

[37]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[39]  E. Fama Market Efficiency, Long-Term Returns, and Behavioral Finance , 1997 .

[40]  A. Rhandi,et al.  Positive Linear Systems , 2017 .

[41]  Anshul Mittal,et al.  Stock Prediction Using Twitter Sentiment Analysis , 2011 .

[42]  Jeremy Piger Is all that talk just noise , 2006 .

[43]  F. Eugene FAMA, . Market efficiency, long-term returns, and behavioral finance, Journal of Financial Economics . , 1998 .