Jean-Eric Pin ()

This main result of this paper states that a recognizable language is open in the Hall topology if and only if it belongs to the polynomial closure C of the group languages. A group language is a recognizable language accepted by a permutation automaton. The polynomial closure of a class of languages L is the set of languages that are finite unions of languages of the form L0a1L1 ... anLn, where the ai's are letters and the Li's are elements of L. The Hall topology is the topology in which the open sets are finite or infinite unions of group languages. We also give a combinatorial description of these languages and a syntactic characterization. Let L be a recognizable set of A*, let M be its syntactic monoid and let P be its syntactic image. Then L belongs to C if and only if, for every s, t in M and for every idempotent e of M, st in P implies set in P. Finally, we give a characterization on the minimal automaton of L that leads to a polynomial time algorithm to check, given a finite deterministic automaton, whether it recognizes of C.

[1]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[2]  J. E. Pin A topological approach to a conjecture of Rhodes , 1988, Bulletin of the Australian Mathematical Society.

[3]  Christophe Reutenauer,et al.  Sur mon article “une topologie du monoide libre” , 1981 .

[4]  Luis Ribes,et al.  The Pro-P Topology of a Free Group and Algorithmic Problems in Semigroups , 1994, Int. J. Algebra Comput..

[5]  Stuart W. Margolis,et al.  Products of group languages , 1985, FCT.

[6]  Jean-Eric Pin,et al.  Product of Group Languages , 1985 .

[7]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[8]  Jean-Éric Pin Relational morphisms, transductions and operations on languages , 1988, Formal Properties of Finite Automata and Applications.

[9]  Jean-Éric Pin Finite Group Topology and p-Adic Topology for Free Monoids , 1985, ICALP.

[10]  Jean-Eric Pin Formal Properties of Finite Automata and Applications , 1988, Lecture Notes in Computer Science.

[11]  Christophe Reutenauer,et al.  Une Topologie du Monoïde Libre , 1979 .

[12]  Imre Simon,et al.  The Product of Rational Languages , 1993, ICALP.

[13]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[14]  Luis Ribes,et al.  On The Profinite Topology on a Free Group , 1993 .

[15]  Karsten Henckell,et al.  Ash's Type II Theorem, Profinite Topology and Malcev Products: Part I , 1991, Int. J. Algebra Comput..

[16]  Jean-Eric Pin,et al.  Topologies for the free monoid , 1991 .

[17]  Marshall Hall,et al.  A Topology for Free Groups and Related Groups , 1950 .

[18]  Jean-Eric Pin,et al.  A conjecture on the Hall topology for the free group , 1991 .

[19]  Christopher J. Ash,et al.  Inevitable Graphs: a Proof of the Type II Conjecture and some Related Decision Procedures , 1991, Int. J. Algebra Comput..

[20]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[21]  M. Schützenberger,et al.  Sur Le Produit De Concatenation Non Ambigu , 1976 .