A review of the quantum current standard

The electric current, voltage, and resistance standards are the most important standards related to electricity and magnetism. Of these three standards, only the ampere, which is the unit of electric current, is an International System of Units (SI) base unit. However, even with modern technology, relatively large uncertainty exists regarding the generation and measurement of current. As a result of various innovative techniques based on nanotechnology and novel materials, new types of junctions for quantum current generation and single-electron current sources have recently been proposed. These newly developed methods are also being used to investigate the consistency of the three quantum electrical effects, i.e. the Josephson, quantum Hall, and single-electron tunneling effects, which are also known as 'the quantum metrology triangle'. This article describes recent research and related developments regarding current standards and quantum-metrology-triangle experiments.

[1]  Gert Rietveld,et al.  1:30000 cryogenic current comparator with optimum squid readout , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[3]  J. Martinis,et al.  A capacitance standard based on counting electrons , 1999, Conference on Precision Electromagnetic Measurements. Conference Digest. CPEM 2000 (Cat. No.00CH37031).

[4]  Junichi Motohisa,et al.  Single electron transport and current quantization in a novel quantum dot structure , 1994 .

[5]  Marc Kastner,et al.  Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures , 1993 .

[6]  Makusu Tsutsui,et al.  Single-Molecule Electrical Random Resequencing of DNA and RNA , 2012, Scientific Reports.

[7]  Johnson,et al.  Quantized current in a quantum-dot turnstile using oscillating tunnel barriers. , 1991, Physical review letters.

[8]  Peter J. Mohr,et al.  CODATA Recommended Values of the Fundamental Constants: 1998 , 2000 .

[9]  B. Jeanneret,et al.  Application of the Josephson effect in electrical metrology , 2009 .

[10]  K. Pierz,et al.  Self-referenced single-electron quantized current source. , 2013, Physical review letters.

[11]  Yu. A. Pashkin,et al.  Parallel pumping of electrons , 2009, 0908.2357.

[12]  Taro Itatani,et al.  Development of quantum hall array resistance standards at NMIJ , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[13]  Wei Lu,et al.  Real-time detection of electron tunnelling in a quantum dot , 2003, Nature.

[14]  K. West,et al.  The role of MBE in recent quantum Hall effect physics discoveries , 2003 .

[15]  D. A. Ritchie,et al.  Quantized charge pumping through a quantum dot by surface acoustic waves , 2004 .

[16]  Semiconductor quantized voltage source. , 2011, Physical review letters.

[17]  Yu. A. Pashkin,et al.  Single-electron current sources: towards a refined definition of ampere , 2012, 1208.4030.

[18]  J. P. André,et al.  A first attempt to realize (multiple-QHE devices)-series array resistance standards , 1999, IEEE Trans. Instrum. Meas..

[19]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[20]  N. Kaneko,et al.  Development of a one-chip quantized Hall resistance voltage divider , 2012 .

[21]  Jonas Bylander,et al.  Current measurement by real-time counting of single electrons , 2004, Nature.

[22]  Godfrey Gumbs,et al.  Enhanced current quantization in high-frequency electron pumps in a perpendicular magnetic field , 2008 .

[23]  F. Piquemal,et al.  Ultralow noise current amplifier based on a cryogenic current comparator , 2000 .

[24]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[25]  M. Devoret,et al.  Single-electron transfer in metallic nanostructures , 1992, Nature.

[26]  K. Likharev Correlated discrete transfer of single electrons in ultrasmall tunnel junctions , 1988 .

[27]  Quantum resistance standard accuracy close to the zero-dissipation state , 2013, 1301.5241.

[28]  Delsing,et al.  Time-correlated single-electron tunneling in one-dimensional arrays of ultrasmall tunnel junctions. , 1989, Physical review letters.

[29]  J. Pekola,et al.  Andreev tunneling in charge pumping with SINIS turnstiles , 2011, 1106.3918.

[30]  D. Ritchie,et al.  Towards a quantum representation of the ampere using single electron pumps , 2012, Nature Communications.

[31]  François Piquemal,et al.  Metrology triangle using a Watt balance, a calculable capacitor and a single-electron tunnelling device , 2008 .

[32]  Yasuo Takahashi,et al.  Current quantization due to single-electron transfer in Si-wire charge-coupled devices , 2004 .

[33]  G. Hein,et al.  Single-parameter nonadiabatic quantized charge pumping , 2007, 0707.0993.

[34]  Barry N. Taylor,et al.  THE 1986 ADJUSTMENT OF THE FUNDAMENTAL PHYSICAL CONSTANTS: A REPORT OF THE CODATA TASK GROUP ON FUNDAMENTAL CONSTANTS , 1987 .

[35]  Kensei Ehara,et al.  Evaluation of uncertainties in femtoampere current measurement for the number concentration standard of aerosol nanoparticles , 2011 .

[36]  E. Weig,et al.  Ultrasonically driven nanomechanical single-electron shuttle. , 2008, Nature nanotechnology.

[37]  Barry N. Taylor,et al.  The 1973 Least‐Squares Adjustment of the Fundamental Constants , 1973 .

[38]  N. Zimmerman,et al.  Direct resistance comparisons from the QHR to100 M/spl Omega/ using a cryogenic current comparator , 2004, IEEE Transactions on Instrumentation and Measurement.

[39]  J. Pekola,et al.  Real-time observation of discrete Andreev tunneling events. , 2010, Physical review letters.

[40]  M. Furlan,et al.  Why the long-term charge offset drift in Si single-electron tunneling transistors is much smaller (better) than in metal-based ones: Two-level fluctuator stability , 2008 .

[41]  F. Piquemal,et al.  Determination of the elementary charge and the quantum metrological triangle experiment , 2009 .

[42]  Jukka P. Pekola,et al.  Magnetic-field-induced stabilization of nonequilibrium superconductivity in a normal-metal/insulator/superconductor junction , 2011 .

[43]  Michel Devoret,et al.  Frequency-locked turnstile device for single electrons , 1990 .

[44]  Alexander B. Zorin,et al.  Theory of the Bloch-wave oscillations in small Josephson junctions , 1985 .

[45]  T. J. Witt,et al.  New International Electrical Reference Standards Based on the Josephson and Quantum Hall Effects , 1989 .

[46]  B. Jeckelmann,et al.  Revised technical guidelines for reliable dc measurements of the quantized Hall resistance , 2003 .

[47]  J. Pekola,et al.  Fast and accurate single-island charge pump: implementation of a cooper pair pump. , 2003, Physical review letters.

[48]  S. Kiryu,et al.  Development of a voltage divider based on quantized Hall resistance arrays for a high DC voltage standard II , 2008, 2008 Conference on Precision Electromagnetic Measurements Digest.

[49]  V. Fal’ko,et al.  Gigahertz quantized charge pumping in graphene quantum dots. , 2012, Nature nanotechnology.

[50]  Alexander B. Zorin,et al.  Investigation of the offset charge noise in single electron tunneling devices , 1996 .

[51]  Juha J. Vartiainen,et al.  Correction: Corrigendum: Hybrid single-electron transistor as a source of quantized electric current , 2007, Nature Physics.

[52]  D. V. Averin,et al.  Experimental investigation of hybrid single-electron turnstiles with high charging energy , 2009 .

[53]  Gert Rietveld,et al.  Electrical Units in the New SI: Saying Goodbye to the 1990 Values , 2014 .

[54]  J. Pekola,et al.  Environment-assisted tunneling as an origin of the Dynes density of states. , 2010, Physical review letters.

[55]  Temperature square dependence of the low frequency charge noise in the Josephson junction qubits. , 2006, Physical review letters.

[56]  A. Fujiwara,et al.  Gigahertz single-trap electron pumps in silicon , 2014, Nature Communications.

[57]  Tjbm Janssen,et al.  Redefinition of the Ampere , 2014 .

[58]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[59]  A. M. Thompson,et al.  A New Theorem in Electrostatics and its Application to Calculable Standards of Capacitance , 1956, Nature.

[60]  P. Samuelsson,et al.  Proposal for nonlocal electron-hole turnstile in the quantum Hall regime , 2010, 1006.0136.

[61]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[62]  Michel Devoret,et al.  Single-Electron Pump Based on Charging Effects , 1992 .

[63]  F. Ahlers,et al.  Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy. , 2015, The Review of scientific instruments.

[64]  O. Seron,et al.  Quantum metrological triangle experiment at LNE: measurements on a three-junction R-pump using a 20 000:1 winding ratio cryogenic current comparator , 2012 .

[65]  J. Pekola,et al.  Probing quasiparticle excitations in a hybrid single electron transistor , 2012, 1204.1028.

[66]  F. Piquemal,et al.  Fundamental electrical standards and the quantum metrological triangle , 2004 .

[67]  J. Mooij,et al.  Superconducting nanowires as quantum phase-slip junctions , 2006 .

[68]  David A. Ritchie,et al.  Gigahertz quantized charge pumping , 2007 .

[69]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[70]  Dean G. Jarrett,et al.  Direct resistance comparisons from the QHR to100 MΩ using a cryogenic current comparator , 2005, IEEE Trans. Instrum. Meas..

[71]  J. Pekola,et al.  Nonadiabatic charge pumping in a hybrid single-electron transistor. , 2008, Physical review letters.

[72]  B. Taylor,et al.  Determination of eh, Using Macroscopic Quantum Phase Coherence in Superconductors: Implications for Quantum Electrodynamics and the Fundamental Physical Constants , 1969 .

[73]  Taro Itatani,et al.  New design of the quantized Hall resistance array device , 2012, 2012 Conference on Precision electromagnetic Measurements.

[74]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2007, 0801.0028.

[75]  S. Chorley,et al.  Quantized charge pumping through a carbon nanotube double quantum dot , 2012, 1204.1044.

[76]  M. Keller Current status of the quantum metrology triangle , 2008 .

[77]  B. Camarota,et al.  Quantum metrology triangle experiments: a status review , 2012, 1204.6500.

[78]  B. Porcar,et al.  Cryogenic current comparators with optimum SQUID readout for current and resistance quantum metrology , 2002 .

[79]  Nobu-hisa Kaneko,et al.  Review of Josephson Waveform Synthesis and Possibility of New Operation Method by Multibit Delta–Sigma Modulation and Thermometer Code for Its Further Advancement , 2012 .

[80]  John M. Martinis,et al.  Accuracy of electron counting using a 7‐junction electron pump , 1996 .

[81]  R. Yakimova,et al.  Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system , 2015, 1507.04601.

[82]  B P Kibble,et al.  A Measurement of the Gyromagnetic Ratio of the Proton in a Strong Magnetic Field , 1979 .

[83]  Ralf Behr,et al.  Validation of a quantized-current source with 0.2 ppm uncertainty , 2015, 1506.05965.

[84]  Shuji Nakamura,et al.  Single-Electron Pumping by Parallel SINIS Turnstiles for Quantum Current Standard , 2015, IEEE Transactions on Instrumentation and Measurement.

[85]  Sherwin,et al.  Complete charge density-wave mode locking and freeze-out of fluctuations in NbSe3. , 1985, Physical review. B, Condensed matter.

[86]  M. Bae,et al.  Improvement of electron pump accuracy by a potential-shape-tunable quantum dot pump , 2014 .