Manipulation of Nematic Liquid Crystal Microdroplets by Pyroelectric Effect

We present experimental results concerning liquid crystals microdroplets behavior onto functionalized lithium niobate substrates covered with Polydimethylsiloxane (PDMS) polymer. Droplets are fragmented, driven, and reassembled by electric fields generated by pyroelectric effect. We analyze the dynamics of the observed phenomena and suggest possible technological applications.

[1]  M. Denn,et al.  Interfacial Tension of Liquid Crystalline Droplets , 2003 .

[2]  Simona Tonini,et al.  The role of droplet fragmentation in high-pressure evaporating diesel sprays , 2009 .

[3]  W. Wlodarski,et al.  Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles , 2009 .

[4]  Yu Sun,et al.  Dielectrophoretically trapping semiconductive carbon nanotube networks , 2008, Nanotechnology.

[5]  G. Barbero,et al.  An electro-optic device based on field-controlled anchoring of a nematic liquid crystal , 1998 .

[6]  G. Rohrer,et al.  Spatially Selective Photochemical Reduction of Silver on the Surface of Ferroelectric Barium Titanate , 2001 .

[7]  Shin-Tson Wu,et al.  Adaptive liquid crystal lens with large focal length tunability. , 2006, Optics express.

[8]  T. P. Pearl,et al.  Liquid crystal deposition on poled, single crystalline lithium niobate , 2008 .

[9]  Jan Fousek,et al.  Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films , 2010, 1003.5478.

[10]  A. Gruverman,et al.  Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects , 2008, Nanotechnology.

[11]  Steve Dunn,et al.  Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures , 2002 .

[12]  Wei-Chia Su,et al.  Projected fringe profilometry using a liquid-crystal spatial light modulator to extend the depth measuring range. , 2011, Optics express.

[13]  L. Eng,et al.  Ferroelectric lithography: bottom-up assembly and electrical performance of a single metallic nanowire. , 2009, Nano letters.

[14]  Pietro Ferraro,et al.  Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals , 2008 .

[15]  M. Yamato,et al.  Particle trapping and undulation of a liquid surface using a microscopically modulated magnetic field. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[16]  G. Distler,et al.  Interaction of Defect and Domain Structures of Triglycine Sulphate Crystals in Ferroelectric and Paraelectric States , 1968, Nature.

[17]  Gaetano Assanto,et al.  Integrated electro-optic switch in liquid crystals. , 2005, Optics express.

[18]  R. Nemanich,et al.  Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction , 2006 .

[19]  Sotolongo-Costa,et al.  Criticality in droplet fragmentation. , 1996, Physical review letters.

[20]  R. Nemanich,et al.  Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence , 2011 .

[21]  J. Kenny,et al.  Surface patterning of linearly functionalized [2.2]paracyclophanes by voltage assisted dewetting , 2006 .

[22]  Youn Jin Kim,et al.  Factors affecting the psychophysical image quality evaluation of mobile phone displays: the case of transmissive liquid-crystal displays. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Pietro Ferraro,et al.  Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets , 2008 .

[24]  Bischof,et al.  Spinodal dewetting in liquid crystal and liquid metal films , 1998, Science.

[25]  Igor Lubomirsky,et al.  Water Freezes Differently on Positively and Negatively Charged Surfaces of Pyroelectric Materials , 2010, Science.

[26]  A. Cazabat,et al.  Thin Nematic Films: Metastability And Spinodal Dewetting , 1999 .

[27]  Manjeet Dhindsa,et al.  Electrowetting on Superhydrophobic Surfaces: Present Status and Prospects , 2008 .

[28]  Pietro Ferraro,et al.  Surface-charge lithography for direct PDMS micro-patterning. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[29]  M. Szaleniec,et al.  Theoretical study of 1-(4-hexylcyclohexyl)-4-isothiocyanatobenzene: molecular properties and spectral characteristics , 2009, Journal of molecular modeling.

[30]  Pietro Ferraro,et al.  Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. , 2008, Optics express.

[31]  Sergei V. Kalinin,et al.  Local potential and polarization screening on ferroelectric surfaces , 2001 .

[32]  Igor Muševič,et al.  Electrically tunable liquid crystal optical microresonators , 2009 .

[33]  H. Tsao,et al.  Electrophoretic size separation of particles in a periodically constricted microchannel. , 2008, The Journal of chemical physics.

[34]  Noriaki Ohuchi,et al.  Diagnostic performance of detecting breast cancer on computed radiographic (CR) mammograms: comparison of hard copy film, 3-megapixel liquid-crystal-display (LCD) monitor and 5-megapixel LCD monitor , 2008, European Radiology.

[35]  Demetri Psaltis,et al.  Trapping of dielectric particles with light-induced space-charge fields , 2007 .

[36]  P. Ferraro,et al.  3D lithography by rapid curing of the liquid instabilities at nanoscale , 2011, Proceedings of the National Academy of Sciences.

[37]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[38]  R. Cingolani,et al.  Positive/Negative Arrays of Organic Light‐Emitting Diodes by a Surface‐Tension‐Driven Approach , 2005 .

[39]  Francesco Merola,et al.  Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography , 2009 .

[40]  M Paturzo,et al.  Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting. , 2010, Nature nanotechnology.

[41]  Johannes Courtial,et al.  Holographic assembly workstation for optical manipulation , 2008 .

[42]  V. Cristini,et al.  Scalings for fragments produced from drop breakup in shear flow with inertia , 2001 .

[43]  Melania Paturzo,et al.  In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy , 2008 .

[44]  Young-Ki Kim,et al.  Microlens array fabricated using electrohydrodynamic instability and surface properties. , 2011, Optics express.

[45]  Ebrahim Karimi,et al.  Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence , 2009, 1010.5214.

[46]  Vittorio Cristini,et al.  Drop fragment distributions under shear with inertia , 2002 .

[47]  Hsueh-Chia Chang,et al.  An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. , 2007, Biomicrofluidics.

[48]  E. Bourim,et al.  Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals , 2006 .

[49]  S. Consta,et al.  Disintegration mechanisms of charged aqueous nanodroplets studied by simulations and analytical models. , 2006, The journal of physical chemistry. B.

[50]  A. Gruverman,et al.  Polarization-specific adsorption of organic molecules on ferroelectric LiNbO3 surfaces , 2010 .

[51]  Steve Dunn,et al.  Using the surface spontaneous depolarization field of ferroelectrics to direct the assembly of virus particles , 2004 .

[52]  Jason Heikenfeld,et al.  Observation and optical implications of oil dewetting patterns in electrowetting displays , 2008 .