Extension of the temperature-related Cauchy–Born rule: Material stability analysis and thermo-mechanical coupling

Abstract In this paper, we first study the material stability of nanostructured materials via the continuum linearized stability analysis technique with the temperature-related Cauchy–Born (TCB) rule. As a temperature-related homogenization technique, the TCB rule considers the free energy instead of the potential so that temperature effects on material stability can be investigated. In addition, we develop a thermo-mechanical coupling model through implementing the thermal diffusion equation into nanoscale continuum approximation. Crack propagation at a nanoplate is studied as an example. Since the nanoscale phenomenon of bond breaking is involved when crack propagates, temperature increasing around the crack tip due to the released potential is considered in our thermo-mechanical coupling model.

[1]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[2]  Ted Belytschko,et al.  Stability Analysis of Particle Methods with Corrected Derivatives , 2002 .

[3]  Nicolas Triantafyllidis,et al.  Stability of crystalline solids—II: Application to temperature-induced martensitic phase transformations in a bi-atomic crystal , 2006 .

[4]  Harold S. Park,et al.  The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .

[5]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[6]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[7]  Ted Belytschko,et al.  Material stability analysis of particle methods , 2005, Adv. Comput. Math..

[8]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[9]  Nicolas Triantafyllidis,et al.  Stability of crystalline solids - I: Continuum and atomic lattice considerations , 2006 .

[10]  Ted Belytschko,et al.  A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes , 2003 .

[11]  R. Hill Acceleration waves in solids , 1962 .

[12]  Ted Belytschko,et al.  THE ELEMENT FREE GALERKIN METHOD FOR DYNAMIC PROPAGATION OF ARBITRARY 3-D CRACKS , 1999 .

[13]  S. Xiao,et al.  Studies of Size Effects on Carbon Nanotubes' Mechanical Properties by Using Different Potential Functions , 2006 .

[14]  Huajian Gao,et al.  Physics-based modeling of brittle fracture: Cohesive formulations and the application of meshfree methods , 2000 .

[15]  S. Xiao,et al.  A NANOSCALE MESHFREE PARTICLE METHOD WITH THE IMPLEMENTATION OF THE QUASICONTINUUM METHOD , 2005 .

[16]  Weixuan Yang,et al.  A temperature‐related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations , 2007 .

[17]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[18]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[19]  A. l. Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique , 1904, Nature.

[20]  Weixuan Yang,et al.  Temperature-related Cauchy–Born rule for multiscale modeling of crystalline solids , 2006 .

[21]  S. Xiao,et al.  Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites , 2006 .

[22]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[23]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[24]  M. S. Sivakumar,et al.  Mechanics of Solids , 2008 .