Dormant phages communicate via arbitrium to control exit from lysogeny

[1]  A. Marina,et al.  The arbitrium system controls prophage induction , 2021, Current Biology.

[2]  A. Buckling,et al.  Regulation of prophage induction and lysogenization by phage communication systems , 2021, Current Biology.

[3]  A. Eldar,et al.  Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities , 2021, Nature Communications.

[4]  A. Eldar,et al.  A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. , 2020, Annual review of microbiology.

[5]  V. Sourjik,et al.  Ratiometric population sensing by a pump-probe signaling system in Bacillus subtilis , 2020, Nature Communications.

[6]  K. Seed,et al.  Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite , 2019, bioRxiv.

[7]  S. Abedon Look Who’s Talking: T-Even Phage Lysis Inhibition, the Granddaddy of Virus-Virus Intercellular Communication Research , 2019, Viruses.

[8]  J. Ladau,et al.  Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. , 2019, Trends in microbiology.

[9]  Tingting Zou,et al.  Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage , 2019, Cell Discovery.

[10]  R. Sorek,et al.  Widespread Utilization of Peptide Communication in Phages Infecting Soil and Pathogenic Bacteria. , 2019, Cell host & microbe.

[11]  Lanying Zeng,et al.  Structure Regulates Phage Lysis-Lysogeny Decisions. , 2019, Trends in microbiology.

[12]  A. Eldar,et al.  Clonality and non-linearity drive facultative-cooperation allele diversity , 2018, The ISME Journal.

[13]  W. Ding,et al.  Structural basis of AimP signaling molecule recognition by AimR in Spbeta group of bacteriophages , 2018, Protein & Cell.

[14]  Tingting Zou,et al.  Structural basis of the arbitrium peptide–AimR communication system in the phage lysis–lysogeny decision , 2018, Nature Microbiology.

[15]  Yulia Yuzenkova,et al.  Single-peptide DNA-dependent RNA polymerase homologous to multi-subunit RNA polymerase , 2017, Nature Communications.

[16]  S. Abedon Commentary: Communication between Viruses Guides Lysis–Lysogeny Decisions , 2017, Front. Microbiol..

[17]  Tsutomu Sato,et al.  Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis , 2017, Nucleic acids research.

[18]  Marco Galardini,et al.  Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. , 2017, Cell systems.

[19]  S. Moineau,et al.  Phagebook: The Social Network. , 2017, Molecular cell.

[20]  Rotem Sorek,et al.  Communication between viruses guides lysis-lysogeny decisions , 2016, Nature.

[21]  S. Gandon Why Be Temperate: Lessons from Bacteriophage λ. , 2016, Trends in microbiology.

[22]  Tami D. Lieberman,et al.  Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes , 2015, bioRxiv.

[23]  K. Thormann,et al.  Impact of Spontaneous Prophage Induction on the Fitness of Bacterial Populations and Host-Microbe Interactions , 2014, Journal of bacteriology.

[24]  Andrea Shaw,et al.  Social network. , 2015, Nursing management.

[25]  S. Abedon Bacteriophage secondary infection , 2015, Virologica Sinica.

[26]  P. Eichenberger,et al.  Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in Bacillus subtilis , 2014, PLoS genetics.

[27]  B. Schwikowski,et al.  Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis , 2012, Science.

[28]  J. Sekiguchi,et al.  Bacillus subtilis CwlP of the SP-β Prophage Has Two Novel Peptidoglycan Hydrolase Domains, Muramidase and Cross-linkage Digesting dd-Endopeptidase* , 2010, The Journal of Biological Chemistry.

[29]  A. Grossman,et al.  A conserved anti‐repressor controls horizontal gene transfer by proteolysis , 2008, Molecular microbiology.

[30]  Xin Yan,et al.  Cre/lox System and PCR-Based Genome Engineering in Bacillus subtilis , 2008, Applied and Environmental Microbiology.

[31]  Kenta Nakai,et al.  DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information , 2007, Nucleic Acids Res..

[32]  A. Grossman,et al.  Characterization of the Global Transcriptional Responses to Different Types of DNA Damage and Disruption of Replication in Bacillus subtilis , 2006, Journal of bacteriology.

[33]  Eli S. Groban,et al.  Genetic Composition of the Bacillus subtilis SOS System , 2005, Journal of bacteriology.

[34]  Nicola Zamboni,et al.  Genome engineering reveals large dispensable regions in Bacillus subtilis. , 2003, Molecular biology and evolution.

[35]  S. Moriya,et al.  Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis , 2003, Molecular microbiology.

[36]  G. Węgrzyn,et al.  Rapid degradation of bacteriophage λ O protein by ClpP/ClpX protease influences the lysis-versus-lysogenization decision of the phage under certain growth conditions of the host cells , 2001, Archives of Virology.

[37]  D. McConnell,et al.  Genetic control of bacterial suicide: regulation of the induction of PBSX in Bacillus subtilis , 1994, Journal of bacteriology.

[38]  D. McConnell,et al.  Characterization of PBSX, a defective prophage of Bacillus subtilis , 1990, Journal of bacteriology.

[39]  S. Zahler,et al.  Restriction fragment maps of the genome of Bacillus subtilis bacteriophage SP beta. , 1982, Gene.

[40]  P. Kourilsky,et al.  Lysogenization by bacteriophage lambda. III. Multiplicity dependent phenomena occuring upon infection by lambda. , 1975, Biochimie.

[41]  A. Doermann Lysis and Lysis Inhibition with Escherichia coli Bacteriophage , 1948, Journal of bacteriology.

[42]  申瀅植 III. , 1889, Selected Poems.