Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression

[1]  Seymour Geisser,et al.  The Predictive Sample Reuse Method with Applications , 1975 .

[2]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[3]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[4]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[5]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[6]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[7]  Soroosh Sorooshian,et al.  A framework for development and application of hydrological models , 2001, Hydrology and Earth System Sciences.

[8]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[9]  José Alí Moreno,et al.  Fast Monte Carlo reliability evaluation using support vector machine , 2002, Reliab. Eng. Syst. Saf..

[10]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[11]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[12]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[13]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[14]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[15]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[16]  Ping-Feng Pai,et al.  Software reliability forecasting by support vector machines with simulated annealing algorithms , 2006, J. Syst. Softw..

[17]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[18]  Ping-Feng Pai,et al.  System reliability forecasting by support vector machines with genetic algorithms , 2006, Math. Comput. Model..

[19]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[20]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[21]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[22]  Wei-Chiang Hong,et al.  Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model , 2009 .

[23]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[24]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[25]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[26]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[27]  A. Basudhar,et al.  An improved adaptive sampling scheme for the construction of explicit boundaries , 2010 .

[28]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[29]  Maurice Lemaire,et al.  Assessing small failure probabilities by combined subset simulation and Support Vector Machines , 2011 .

[30]  Hakan A. Çirpan,et al.  A set of new Chebyshev kernel functions for support vector machine pattern classification , 2011, Pattern Recognit..

[31]  Patrick M. Reed,et al.  When are multiobjective calibration trade‐offs in hydrologic models meaningful? , 2012 .

[32]  Enrico Zio,et al.  System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection , 2015, Appl. Soft Comput..

[33]  Mohammad Rajabi,et al.  Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations , 2015 .

[34]  Francesca Pianosi,et al.  A Matlab toolbox for Global Sensitivity Analysis , 2015, Environ. Model. Softw..

[35]  Junjie Li,et al.  System reliability analysis of slopes using least squares support vector machines with particle swarm optimization , 2016, Neurocomputing.

[36]  Weihua Zhang,et al.  Global sensitivity analysis using a Gaussian Radial Basis Function metamodel , 2016, Reliab. Eng. Syst. Saf..

[37]  Bruno Sudret,et al.  Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions , 2015, J. Comput. Phys..

[38]  Francesco Montomoli,et al.  SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos , 2016, J. Comput. Phys..

[39]  J.-M. Bourinet,et al.  Rare-event probability estimation with adaptive support vector regression surrogates , 2016, Reliab. Eng. Syst. Saf..

[40]  Zhenzhou Lu,et al.  Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis , 2017, Reliab. Eng. Syst. Saf..

[41]  Francesco Contino,et al.  A robust and efficient stepwise regression method for building sparse polynomial chaos expansions , 2017, J. Comput. Phys..