Existence of Positive Solutions for p(x)-Laplacian Equations with a Singular Nonlinear Term

In this article, we study the existence of positive solutions for the p(x)-Laplacian Dirichlet problem −∆p(x)u = λf(x, u) in a bounded domain Ω ⊂ RN . The singular nonlinearity term f is allowed to be either f(x, s) → +∞, or f(x, s) → +∞ as s → 0+ for each x ∈ Ω. Our main results generalize the results in [15] from constant exponents to variable exponents. In particular, we give the asymptotic behavior of solutions of a simpler equation which is useful for finding supersolutions of differential equations with variable exponents, which is of independent interest.

[1]  P. Pucci,et al.  Existence of entire solutions for a class of variable exponent elliptic equations , 2014 .

[2]  F. Cammaroto,et al.  On a perturbed p(x)-Laplacian problem in bounded and unbounded domains , 2013 .

[3]  Peter Harjulehto,et al.  Critical variable exponent functionals in image restoration , 2013, Appl. Math. Lett..

[4]  Boying Wu,et al.  Adaptive Perona–Malik Model Based on the Variable Exponent for Image Denoising , 2012, IEEE Transactions on Image Processing.

[5]  Boying Wu,et al.  Reaction–diffusion systems with p(x)-growth for image denoising , 2011 .

[6]  Gheorghe Moroşanu,et al.  Equations involving a variable exponent Grushin-type operator , 2011 .

[7]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[8]  Qihu Zhang Existence, nonexistence and asymptotic behavior of boundary blow-up solutions to p ( x ) -Laplacian , 2011 .

[9]  C. Santos,et al.  Positive solutions for a mixed and singular quasilinear problem , 2011 .

[10]  On the eigenvalues of weighted p ( x ) -Laplacian on R N , 2011 .

[11]  Dušan D. Repovš,et al.  On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting , 2016, 1608.07062.

[12]  M. Mihăilescu,et al.  Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential , 2010 .

[13]  Jingjing Liu Positive solutions of the p(x)-Laplace equation with singular nonlinearity , 2010 .

[14]  Peter Hästö,et al.  Overview of differential equations with non-standard growth , 2010 .

[15]  Zuodong Yang,et al.  Quasilinear elliptic equation involving singular non-linearities , 2010, Int. J. Comput. Math..

[16]  Zhibin Li,et al.  Variable exponent functionals in image restoration , 2010, Appl. Math. Comput..

[17]  C. Zhai,et al.  An existence and uniqueness result for the singular Lane–Emden–Fowler equation , 2010 .

[18]  Teemu Lukkari,et al.  Singular solutions of elliptic equations with nonstandard growth , 2009 .

[19]  Ahmed Mohammed Positive solutions of the p-Laplace equation with singular nonlinearity , 2009 .

[20]  Peter Hästö,et al.  Harnack's inequality for p(⋅)-harmonic functions with unbounded exponent p , 2009 .

[21]  Peter Hästö,et al.  Minimizers of the variable exponent, non-uniformly convex Dirichlet energy , 2008 .

[22]  Vicentiu D. Rădulescu,et al.  Continuous spectrum for a class of nonhomogeneous differential operators , 2007, 0706.4045.

[23]  Xianling Fan,et al.  On the sub-supersolution method for p(x)-Laplacian equations , 2007 .

[24]  Xianling Fan,et al.  Global C1,α regularity for variable exponent elliptic equations in divergence form , 2007 .

[25]  Qihu Zhang Research Article Existence and Asymptotic Behavior of Positive Solutions to p(x)-Laplacian Equations with Singular Nonlinearities , 2007 .

[26]  K. Perera,et al.  On singular $p$-Laplacian problems , 2007, Differential and Integral Equations.

[27]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[28]  Peter Hästö,et al.  The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values , 2006 .

[29]  Mihai Mihailescu,et al.  On a nonhomogeneous quasilinear eigenvalue problem in sobolev spaces with variable exponent , 2006, math/0606156.

[30]  Qihu Zhang,et al.  A strong maximum principle for differential equations with nonstandard p(x)-growth conditions , 2005 .

[31]  Qihu Zhang,et al.  Eigenvalues of p(x)-Laplacian Dirichlet problem , 2005 .

[32]  A. El Hamidi,et al.  Existence results to elliptic systems with nonstandard growth conditions , 2004 .

[33]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[34]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[35]  Giuseppe Mingione,et al.  Regularity Results for a Class of Functionals with Non-Standard Growth , 2001 .

[36]  Dun Zhao,et al.  The quasi-minimizer of integral functionals with m ( x ) growth conditions , 2000 .

[37]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[38]  Dun Zhao,et al.  A class of De Giorgi type and Hölder continuity , 1999 .

[39]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .