Modified compound quadrature rules for strongly singular integrals

We show that the error term of every modified compound quadrature rule for Cauchy principal value integrals with degree of exactnesss is of optimal order of magnitude in the classesCk[−1,1],k=1,2,...,s, but not inCs+1[−1,1]. We give explicit upper bounds for the error constants of the modified midpoint rule, the modified trapezoidal rule and the modified Simpson rule. Furthermore, the results are generalized to analogous rules for Hadamard-type finite part integrals.ZusammenfassungWir zeigen, daß der Fehlerterm jedes modifizierten zusammengesetzten Quadraturverfahrens für Cauchy-Hauptwert-Integrale mit Exaktheitsgrads die bestmögliche Größenordnung in den KlassenCk[−1,1],k=1,2,...,s hat, aber nich inCs+1[−1,1]. Explizite obere Schranken für die Fehlerkonstanten der modifizierten Mittelpunkt-, Trapez- und Simpson-Verfahren werden angegeben. Des weiteren werden die Ergebnisse auf die entsprechenden Verfahren für Finite-Part-Integrale vom Hadamardschen Typ verallgemeinert.

[1]  W. Gautschi A Survey of Gauss-Christoffel Quadrature Formulae , 1981 .

[2]  H. W. Stolle,et al.  On the numerical integration of certain singular integrals , 1992, Computing.

[3]  Nikolaos I. Ioakimidis,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives , 1985 .

[4]  Tatsuo Torii,et al.  Hilbert and Hadamard transforms by generalized Chebyshev expansion , 1994 .

[5]  Kai Diethelm,et al.  Non-optimality of certain quadrature rules for Cauchy principal value integrals , 1994 .

[6]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[7]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[8]  Giovanni Monegato,et al.  The numerical evaluation of one-dimensional Cauchy principal value integrals , 1982, Computing.

[9]  B. Noble,et al.  Error Estimates for Three Methods of Evaluating Cauchy Principal Value Integrals , 1980 .

[10]  Apostolos Gerasoulis,et al.  Piecewise-polynomial quadratures for Cauchy singular integrals , 1986 .

[11]  Charles E. Stewart,et al.  On the Numerical Evaluation of Singular Integrals of Cauchy Type , 1960 .

[12]  Kai Diethelm,et al.  Uniform convergence of optimal order quadrature rules for Cauchy principal value integrals , 1994 .

[13]  M. M. Chawla,et al.  Quadrature formulas for cauchy principal value integrals , 2005, Computing.

[14]  David Elliott,et al.  Gauss type quadrature rules for Cauchy principal value integrals , 1979 .