Effective Hilbert Irreducibility

I Abstract n this paper we prove by entirely elementary means a very effective version of the Hilbert Irreducibility-n Theorem. We then apply our theorem to construct a probabilistic irreducibility test for sparse multivariate poly omials over arbitrary perfect fields. For the usual coefficient fields the test runs in polynomial time in the input K size.

[1]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[2]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.

[3]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[4]  Arjen K. Lenstra Factoring Multivariate Integral Polynomials , 1983, ICALP.

[5]  Erich Kaltofen,et al.  Polynomial-Time Factorization of Multivariate Polynomials over Finite Fields , 1983, ICALP.

[6]  Susan Landau,et al.  Factoring Polynomials Over Algebraic Number Fields , 1985, SIAM J. Comput..

[7]  Erich Kaltofen A Polynomial-Time Reduction from Bivariate to Univariate Integral Polynomial Factorization , 1982, FOCS.

[8]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[9]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[10]  Arjen K. Lenstra,et al.  Factoring polynominals over algebraic number fields , 1983, EUROCAL.

[11]  Arjen K. Lenstra,et al.  Lattices and Factorization of Polynomials over Algebraic Number Fields , 1982, EUROCAM.

[12]  Arnold Schönhage Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.

[13]  Richard Zippel Newton's iteration and the sparse Hensel algorithm (Extended Abstract) , 1981, SYMSAC '81.

[14]  Erich Kaltofen,et al.  A polynomial reduction from multivariate to bivariate integral polynomial factorization. , 1982, STOC '82.

[15]  Erich Kaltofen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..

[16]  Arjen K. Lenstra,et al.  Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..

[17]  Michael D. Fried,et al.  On Hilbert's Irreducibility Theorem , 1974 .

[18]  Karl Dörge Zum Hilbertschen Irreduzibilitätssatz , 1926 .

[19]  Erich Kalto Computing with Polynomials Given by Straight-Line Programs II Sparse Factorization. , 1985 .

[20]  S. Comput,et al.  POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .

[21]  Erich Kaltofen Sparse Hensel Lifting , 1985, European Conference on Computer Algebra.