Deuterium–tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

A. T. Ramsey | N. Fisch | Choong-Seock Chang | J. Manickam | L. Zakharov | R. Budny | D. McCune | M. Mauel | R. Bell | B. Leblanc | G. Hammett | W. Houlberg | E. Synakowski | M. Herrmann | W. Park | G. Fu | M. Kissick | M. Zarnstorff | R. Wieland | M. Beer | G. Rewoldt | W. Dorland | E. Mazzucato | R. Nazikian | M. Okabayashi | Y. Nagayama | M. Osakabe | M. Sasao | K. Young | R. Fonck | H. Kugel | R. Kaita | R. Majeski | A. Roquemore | E. Strait | J. Kim | K. Wong | S. Zweben | E. Fredrickson | D. Mikkelsen | M. Redi | S. Sabbagh | M. Bell | F. Levinton | S. Mirnov | G. Navratil | W. Heidbrink | H. Furth | M. Yamada | M. Thompson | D. Darrow | G. W. Taylor | P. Efthimion | M. Bitter | C. Bush | L. Grisham | J. Hosea | S. Medley | D. Mueller | H. Park | C. Phillips | C. Skinner | A. Halle | M. Williams | R. Hawryluk | K. Hill | G. Wurden | J. Callen | H. Berk | D. Mansfield | S. Cauffman | Chio Cheng | R. Dendy | J. Wilson | J. Rogers | M. Petrov | Roscoe White | H. Takahashi | P. Phillips | G. McKee | S. Paul | S. Kaye | E. Ruskov | A. Belov | J. Machuzak | B. Breizman | G. Schmidt | J. Hogan | B. Grek | I. Semenov | K. McGuire | Z. Chang | J. Strachan | S. Scott | H. Herrmann | D. Jassby | F. Jobes | A. Ramsey | T. Stevenson | S. Goeler | V. Goloborod’ko | A. Krasilnikov | D. Meade | J. Kesner | R. Fisher | W. Tang | D. Ernst | N. Bretz | David W. Johnson | R. T. Walters | S. Reznik | S. Bernabei | B. Rice | C. Ludescher | N. Gorelenkov | G. Schilling | S. Batha | P. Lamarche | J. McChesney | M. Phillips | M. Hughes | H. Duong | A. Kumar | D. Owens | W. Stodiek | H. Evenson | N. Lam | B. Hooper | T. Senko | B. Stratton | S. Wang | V. Yavorski | J. Wilson | H. Park | C. Cheng | R. White | G. Taylor | B. LeBlanc | M. Williams

[1]  R. Budny,et al.  Local transport barrier formation and relaxation in reverse-shear plasmas on the Tokamak Fusion Test Reactor , 1997 .

[2]  J. Manickam,et al.  The stability of advanced operational regimes on the Tokamak Fusion Test Reactor , 1997 .

[3]  M. Beer,et al.  Turbulent fluctuations in the main core of TFTR plasmas with negative magnetic shear , 1997 .

[4]  L. Zakharov,et al.  Alpha-driven magnetohydrodynamics (MHD) and MHD-induced alpha loss in the Tokamak Fusion Test Reactor , 1997 .

[5]  C. Gormezano,et al.  Optimisation of JET plasmas with current profile control , 1997 .

[6]  S. S. Medley,et al.  Scaling of Confinement with Isotopic Content in Deuterium and Tritium Plasmas , 1997 .

[7]  R. Budny,et al.  Sawtooth mixing of alpha particles in TFTR D-T plasmas , 1996 .

[8]  J. Hosea,et al.  ICRF heating and current drive experiments on TFTR , 1996 .

[9]  J. Manickam,et al.  MHD stability studies in reversed shear plasmas in TFTR , 1996 .

[10]  N. Fisch,et al.  Prospects for Alpha Channeling: Initial Results from TFTR , 1996 .

[11]  W. Houlberg,et al.  Stability in high gain plasmas in DIII-D , 1996 .

[12]  B. Leblanc,et al.  ICRF heating of TFTR plasmas fuelled by deuterium - tritium neutral beam injection , 1996 .

[13]  E. D. Fredrickson,et al.  Ion cyclotron range of frequency experiments in the Tokamak Fusion Test Reactor with fast waves and mode converted ion Bernstein waves , 1996 .

[14]  N. Fisch,et al.  Alpha particle losses from Tokamak Fusion Test Reactor deuterium–tritium plasmas , 1996 .

[15]  J. Manickam,et al.  A magnetohydrodynamic stability study of reverse shear equilibria in the Tokamak Fusion Test Reactor , 1996 .

[16]  Murakami,et al.  Mode conversion heating and current drive experiments in TFTR. , 1996, Physical review letters.

[17]  R. Budny,et al.  Enhancement of Tokamak Fusion Test Reactor performance by lithium conditioning , 1996 .

[18]  Lao,et al.  Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. , 1995, Physical review letters.

[19]  C. Hedrick,et al.  Strategies for modifying alpha driven TAE thresholds through q profile and ion temperature control , 1995 .

[20]  C. Barnes,et al.  Overview of DT results from TFTR , 1995 .

[21]  Fredrickson,et al.  Stability analysis of toroidicity-induced Alfvén eigenmodes in TFTR deuterium-tritium experiments. , 1995, Physical review letters.

[22]  Olson,et al.  Measurements of fast confined alphas on TFTR. , 1995, Physical review letters.

[23]  Bell,et al.  Confined alpha distribution measurements in a deuterium-tritium tokamak plasma. , 1995, Physical review letters.

[24]  Manickam,et al.  Improved confinement with reversed magnetic shear in TFTR. , 1995, Physical review letters.

[25]  James R. Wilson,et al.  Ion cyclotron range of frequencies heating and current drive in deuterium–tritium plasmas , 1995 .

[26]  R. J. Fonck,et al.  Isotopic scaling of confinement in deuterium–tritium plasmas , 1995 .

[27]  P. Rebut ITER: the first experimental fusion reactor , 1995 .

[28]  M. Ono,et al.  Active core profile and transport modification by application of ion Bernstein wave power in the Princeton Beta Experiment-Modification , 1995 .

[29]  Steve C. Chiu,et al.  Nondimensional transport scaling in DIII‐D: Bohm versus gyro‐Bohm resolved , 1995 .

[30]  Fisch,et al.  Interaction of energetic alpha particles with intense lower hybrid waves. , 1992, Physical review letters.

[31]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[32]  Harold P. Furth,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 2007 .