Affirmative action algorithms

Affirmative action is a new variety of selection rule which employs historical information to favor the choice of elements that have not been selected in the past. We categorize three implementations of this principle and discuss their application to the simplex method, to Bard-type schemes for the linear complementarity problem, and to augmenting path methods for network flow problems. We present analytical and computational results, and some open questions.

[1]  Norman Zadeh What is the Worst Case Behavior of the Simplex Algorithm , 1980 .

[2]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[3]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[4]  J. Orlin On the simplex algorithm for networks and generalized networks , 1983 .

[5]  V. Chvátal,et al.  Notes on Bland’s pivoting rule , 1978 .

[6]  S. Ross A Simple Heuristic Approach to Simplex Efficiency. , 1982 .

[7]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[8]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[9]  Robert G. Jeroslow,et al.  The simplex algorithm with the pivot rule of maximizing criterion improvement , 1973, Discret. Math..

[10]  Craig A. Tovey,et al.  Low order polynomial bounds on the expected performance of local improvement algorithms , 1986, Math. Program..

[11]  Norman Zadeh,et al.  Theoretical Efficiency of the Edmonds-Karp Algorithm for Computing Maximal Flows , 1972, JACM.

[12]  A. G. Azpeitia,et al.  A decision rule in the simplex method that avoids cycling , 1964 .

[13]  Norman Zadeh More pathological examples for network flow problems , 1973, Math. Program..

[14]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[15]  G. Golub,et al.  Numerical techniques in mathematical programming , 1970 .

[16]  K. G. Murty Computational complexity of complementary pivot methods , 1978 .

[17]  Yahya FATHI,et al.  Computational complexity of LCPs associated with positive definite symmetric matrices , 1979, Math. Program..

[18]  Per Olov Lindberg,et al.  On the length of simplex paths: The assignment case , 1984, Math. Program..

[19]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[20]  W. H. Cunningham,et al.  Theoretical Properties of the Network Simplex Method , 1979, Math. Oper. Res..