Microstructure and Mechanical Properties of the As‐Cast AlLiCuMgZr Alloy with High Li Content and Different Cu/Mg Ratios

The microstructures and mechanical properties of as‐cast AlLiCuMgZr alloys with high Li content and different Cu/Mg ratios are investigated. The results show that the tensile strength increases and the elongation almost keeps unchanged, with the decrease in Cu/Mg ratio. The tensile fracture exhibits typical intergranular fracture. The main phases of as‐cast alloys are α(Al), δ′(Al3Li), and T2(Al6Li3Cu). With the decrease in Cu/Mg ratio, the size of the δ′(Al3Li) phase increases, and the amount of T2(Al6Li3Cu) phase at the grain boundary decreases. Moreover, the fine S1(Al2MgLi) phase and S′(Al2CuMg) phase are formed inside the grains near the grain boundaries. The improved properties are attributed to the solution strengthening and second‐phase strengthening of δ′(Al3Li).

[1]  Yangqiu Wang,et al.  Effects of Sc and Zr on microstructure and properties of 1420 aluminum alloy , 2019, Materials Characterization.

[2]  Zhen Lu,et al.  Study on the microstructure evolution and mechanical properties of an Al-Mg-Li alloy aged by electropulsing assisted ageing processing , 2019, Materials Science and Engineering: A.

[3]  Zhen Lu,et al.  Influence of electropulsing treatment combined with pre-deformation on ageing behavior and mechanical properties of 5A90 Al-Li alloy , 2019, Journal of Alloys and Compounds.

[4]  M. Derradji,et al.  Mechanical and gamma rays shielding properties of a novel fiber-metal laminate based on a basalt/phthalonitrile composite and an Al-Li alloy , 2019, Composite Structures.

[5]  Yangqiu Wang,et al.  Ambient-temperature mechanical properties of isochronally aged 1420-Sc-Zr aluminum alloy , 2019, Materials Science and Engineering: A.

[6]  L. Zhen,et al.  Influence of Mg content on ageing precipitation behavior of Al-Cu-Li-x alloys , 2019, Materials Science and Engineering: A.

[7]  A. Medjahed,et al.  Impeding effect of the Al3(Er,Zr,Li) particles on planar slip and intergranular fracture mechanism of Al-3Li-1Cu-0.1Zr-X alloys , 2019, Materials Characterization.

[8]  Mingxing Zhang,et al.  Effect of cooling rate on grain refinement of cast aluminium alloys , 2018, Materialia.

[9]  M. Derradji,et al.  Influence of the rolling direction on the microstructure, mechanical, anisotropy and gamma rays shielding properties of an Al-Cu-Li-Mg-X alloy , 2018, Materials Science and Engineering: A.

[10]  Yangqiu Wang,et al.  Effects of Cu/Mg ratio on the microstructure, mechanical and corrosion properties of Al-Li-Cu-Mg-X alloys , 2018 .

[11]  Yong-bo Xu,et al.  Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review , 2017, Journal of advanced research.

[12]  Xianfeng Li,et al.  Precipitation behavior of the high-Li-content in-situ TiB2/Al-Li-Cu composite , 2017 .

[13]  Guohua Wu,et al.  Microstructural characteristics and mechanical properties of cast Al-3Li-xCu-0.2Zr alloy , 2016 .

[14]  M. Haghshenas,et al.  On room-temperature nanoindentation response of an Al–Li–Cu alloy , 2016 .

[15]  S. Duan,et al.  Complex Precipitation Sequences of Al-Cu-Li-(Mg) Alloys Characterized in Relation to Thermal Ageing Processes , 2016, Acta Metallurgica Sinica (English Letters).

[16]  B. Rahimi,et al.  Microstructural characteristics and mechanical properties of Al-2024 alloy processed via a rheocasting route , 2015, International Journal of Minerals, Metallurgy, and Materials.

[17]  M. Zikry,et al.  Experimental and computational investigation of the dynamic behavior of Al–Cu–Li alloys , 2014 .

[18]  M. Avettand-Fènoël,et al.  Point defects and formation driving forces of complex metallic alloys: Atomic-scale study of Al4Cu9 , 2014 .

[19]  A. Deschamps,et al.  The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys , 2013 .

[20]  R. Rioja,et al.  The Evolution of Al-Li Base Products for Aerospace and Space Applications , 2012, Metallurgical and Materials Transactions A.

[21]  R. Mishra,et al.  Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy , 2011 .

[22]  J. Jun,et al.  Microstructural characteristics and mechanical properties of Al2.5 wt.% Li1.2 wt.% Cu xMg alloys , 2007 .

[23]  M. Starink,et al.  Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys , 2005 .

[24]  D. Eskin,et al.  Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys , 2005 .

[25]  Jingjie Guo,et al.  Influences of dendrite morphologies and solid-back diffusion on macrosegregation in directionally solidified blade-like casting , 2003 .

[26]  V. Zakharov Some Problems of the Use of Aluminum-Lithium Alloys , 2003 .

[27]  Shuang-Tin Chen,et al.  Computational and experimental investigation of microsegregation in an Al-rich Al–Cu–Mg–Si quaternary alloy , 2002 .

[28]  D. B. Goel,et al.  δ Precipitation in an AlLiCuMgZr alloy , 1994 .

[29]  Y. L. Liu,et al.  The solidification behavior of 8090 Al-Li alloy , 1993 .

[30]  D. S. Zhou,et al.  Effect of variation in the Cu:Mg ratios on the formation of T2 and C phases in AA 8090 alloys , 1992 .

[31]  E. Lavernia,et al.  Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys , 1990 .

[32]  J. C. Huang,et al.  Addition rules and the contribution of δ' precipitates to strengthening of aged AlLiCu alloys , 1988 .

[33]  P. Sainfort,et al.  THE T2 COMPOUND : A STABLE QUASI-CRYSTAL IN THE SYSTEM Al-Li-Cu-(Mg) ? , 1986 .