Convergence of Cascade Algorithms in Sobolev Spaces for Perturbed Refinement Masks

In this paper, the convergence of the cascade algorithm in a Sobolev space is considered if the refinement mask is perturbed. It is proved that the cascade algorithm corresponding to a slightly perturbed mask converges. Moreover, the perturbation of the resulting limit function is estimated in terms of that of the masks.

[1]  Qingtang Jiang,et al.  Convergence of cascade algorithms in Sobolev spaces and integrals of wavelets , 2002, Numerische Mathematik.

[2]  S. Riemenschneider,et al.  Convergence of Vector Subdivision Schemes in Sobolev Spaces , 2002 .

[3]  Ding-Xuan Zhou Norms Concerning Subdivision Sequences and Their Applications in Wavelets , 2001 .

[4]  Bin Han The initial functions in a subdivision scheme , 2001 .

[5]  N. Dyn,et al.  Multivariate Approximation and Applications: Index , 2001 .

[6]  C. Chui,et al.  The Initial Functions in a Subdivision Scheme , 2001 .

[7]  Algebraic properties of subdivision operators with matrix mask and their applications , 1999 .

[8]  K. Jetter,et al.  A survey on L2-approximation order from shift-invariant spaces , 1999 .

[9]  Qingtang Jiang Multivariate matrix refinable functions with arbitrary matrix dilation , 1999 .

[10]  C. Micchelli,et al.  On vector subdivision , 1998 .

[11]  R. Jia Shift-invariant spaces and linear operator equations , 1998 .

[12]  Rong-Qing Jia,et al.  Vector subdivision schemes and multiple wavelets , 1998, Math. Comput..

[13]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[14]  Tim N. T. Goodman,et al.  Convergence of cascade algorithms , 1998 .

[15]  Rong-Qing Jia,et al.  Approximation properties of multivariate wavelets , 1998, Math. Comput..

[16]  Bin Han Subdivision schemes, biorthogonal wavelets and image compression , 1998 .

[17]  Zuowei Shen Refinable function vectors , 1998 .

[18]  Convergence and Boundedness of Cascade Algorithm in Besov Spaces and Triebel-lizorkin Spaces: Part I , 1998 .

[19]  S. L. Lee,et al.  Convergence of multidimensional cascade algorithm , 1998 .

[20]  Thomas A. Hogan,et al.  How is a Vector Pyramid Scheme Affected by Perturbation in the Mask , 1998 .

[21]  Charles A. Micchelli,et al.  Regularity of multiwavelets , 1997, Adv. Comput. Math..

[22]  L. Schumaker,et al.  Surface Fitting and Multiresolution Methods , 1997 .

[23]  Bin Han,et al.  ERROR ESTIMATE OF A SUBDIVISION SCHEME WITH A TRUNCATED REFINEMENT MASK , 1997 .

[24]  Gilbert Strang,et al.  Eigenvalues of (↓2)H and convergence of the cascade algorithm , 1996, IEEE Trans. Signal Process..

[25]  Rong-Qing Jia,et al.  Approximation by Multiple Reenable Functions , 1996 .

[26]  S. Riemenschneider,et al.  Approximation by Multiple Re nable Functions yRong , 1996 .

[27]  I. Daubechies,et al.  How does truncation of the mask affect a refinable function? , 1995 .

[28]  The Toeplitz theorem and its applications to approximation theory and linear PDEs , 1995 .

[29]  Rong-Qing Jia,et al.  Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..

[30]  R. Jia The Toeplitz theorem and its applications to approximation theory and linear PDEs , 1995 .

[31]  R. Jia Subdivision Schemes in L p Spaces , 1995 .

[32]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[33]  D. Colella,et al.  Characterizations of Scaling Functions: Continuous Solutions , 1994 .

[34]  Christopher Heil,et al.  Some stability properties of wavelets and scaling functions , 1994 .

[35]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[36]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[37]  G. Alexits Approximation theory , 1983 .