Minimum Weight Connectivity Augmentation for Planar Straight-Line Graphs

We consider edge insertion and deletion operations that increase the connectivity of a given planar straight-line graph (PSLG), while minimizing the total edge length of the output. We show that every connected PSLG \(G=(V,E)\) in general position can be augmented to a 2-connected PSLG \((V,E\cup E^+)\) by adding new edges of total Euclidean length \(\Vert E^+\Vert \le 2\Vert E\Vert \), and this bound is the best possible. An optimal edge set \(E^+\) can be computed in \(O(|V|^4)\) time; however the problem becomes NP-hard when G is disconnected. Further, there is a sequence of edge insertions and deletions that transforms a connected PSLG \(G=(V,E)\) into a plane cycle \(G'=(V,E')\) such that \(\Vert E'\Vert \le 2\Vert \mathrm{MST}(V)\Vert \), and the graph remains connected with edge length below \(\Vert E\Vert +\Vert \mathrm{MST}(V)\Vert \) at all stages. These bounds are the best possible.

[1]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[2]  Stephen G. Kobourov,et al.  Computing homotopic shortest paths efficiently , 2006, Comput. Geom..

[3]  Evangelos Kranakis,et al.  Approximating the Edge Length of 2-Edge Connected Planar Geometric Graphs on a Set of Points , 2012, LATIN.

[4]  Sergei N. Bespamyatnikh Computing homotopic shortest paths in the plane , 2003, SODA '03.

[5]  Alexander Wolff,et al.  Augmenting the Connectivity of Planar and Geometric Graphs , 2012, J. Graph Algorithms Appl..

[6]  László A. Végh,et al.  Fixed-Parameter Algorithms for Minimum Cost Edge-Connectivity Augmentation , 2013, ICALP.

[7]  Guy Kortsarz,et al.  A Simplified 1.5-Approximation Algorithm for Augmenting Edge-Connectivity of a Graph from 1 to 2 , 2015, ACM Trans. Algorithms.

[8]  Csaba D. Tóth Connectivity augmentation in planar straight line graphs , 2012, Eur. J. Comb..

[9]  Csaba D. Tóth,et al.  Plane Geometric Graph Augmentation: A Generic Perspective , 2013 .

[10]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[11]  Haitao Wang,et al.  A new algorithm for computing visibility graphs of polygonal obstacles in the plane , 2015, J. Comput. Geom..

[12]  Alexander Pilz Flip distance between triangulations of a planar point set is APX-hard , 2014, Comput. Geom..

[13]  Marc Noy,et al.  Flipping Edges in Triangulations , 1999, Discret. Comput. Geom..

[14]  Petra Mutzel,et al.  Planar Biconnectivity Augmentation with Fixed Embedding , 2009, IWOCA.

[15]  Goos Kant,et al.  Planar Graph Augmentation Problems (Extended Abstract) , 1991, WADS.

[16]  Mark H. Overmars,et al.  New methods for computing visibility graphs , 1988, SCG '88.

[17]  Jorge Urrutia,et al.  Augmenting the connectivity of geometric graphs , 2008, Comput. Geom..

[18]  Csaba D. Tóth,et al.  Augmenting Planar Straight Line Graphs to 2-Edge-Connectivity , 2015, Graph Drawing.

[19]  Sergey Bereg,et al.  Computing homotopic shortest paths in the plane , 2003, SODA.

[20]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[21]  László A. Végh Augmenting Undirected Node-Connectivity by One , 2011, SIAM J. Discret. Math..

[22]  Joseph JáJá,et al.  Approximation Algorithms for Several Graph Augmentation Problems , 1981, SIAM J. Comput..

[23]  A. Frank Connections in Combinatorial Optimization , 2011 .

[24]  Sang Won Bae,et al.  Gap-planar graphs , 2018, Theor. Comput. Sci..

[25]  Mark de Berg,et al.  Optimal Binary Space Partitions for Segments in the Plane , 2012, Int. J. Comput. Geom. Appl..

[26]  Evangelos Kranakis,et al.  Bounded Length, 2-Edge Augmentation of Geometric Planar Graphs , 2012, Discret. Math. Algorithms Appl..