Using ontological inference and hierarchical matchmaking to overcome semantic heterogeneity in remote sensing-based biodiversity monitoring

Abstract Ontology-based applications hold promise in improving spatial data interoperability. In this work we use remote sensing-based biodiversity information and apply semantic formalisation and ontological inference to show improvements in data interoperability/comparability. The proposed methodology includes an observation-based, “bottom-up” engineering approach for remote sensing applications and gives a practical example of semantic mediation of geospatial products. We apply the methodology to three different nomenclatures used for remote sensing-based classification of two heathland nature conservation areas in Belgium and Germany. We analysed sensor nomenclatures with respect to their semantic formalisation and their bio-geographical differences. The results indicate that a hierarchical and transparent nomenclature is far more important for transferability than the sensor or study area. The inclusion of additional information, not necessarily belonging to a vegetation class description, is a key factor for the future success of using semantics for interoperability in remote sensing.

[1]  Damien Arvor,et al.  Towards an Ontological Approach for Classifying Remote Sensing Images , 2012, 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems.

[2]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[3]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[4]  Heiner Stuckenschmidt,et al.  Ontology-Based Integration of Information - A Survey of Existing Approaches , 2001, OIS@IJCAI.

[5]  Christian Schuster,et al.  Grassland habitat mapping by intra-annual time series analysis - Comparison of RapidEye and TerraSAR-X satellite data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Thomas Blaschke,et al.  Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data , 2014, Remote. Sens..

[7]  Marinos Kavouras,et al.  Comparing categories among geographic ontologies , 2005, Comput. Geosci..

[8]  L. Durieux,et al.  Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective , 2013 .

[9]  Krzysztof Janowicz,et al.  The Stimulus-Sensor-Observation Ontology Design Pattern and its Integration into the Semantic Sensor Network Ontology , 2010, SSN.

[10]  Annett Frick Beiträge höchstauflösender Satellitenfernerkundung zum FFH-Monitoring - Entwicklung eines wissensbasierten Klassifikationsverfahrens und Anwendung in Brandenburg , 2007 .

[11]  Boris Motik,et al.  Hypertableau Reasoning for Description Logics , 2009, J. Artif. Intell. Res..

[12]  Heiner Stuckenschmidt,et al.  Ontologies for geographic information processing , 2002 .

[13]  Christian Schuster,et al.  Multi-temporal detection of grassland vegetation with RapidEye imagery and a spectral-temporal library , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[14]  G. Thoonen,et al.  Classification of heathland vegetation in a hierarchical contextual framework , 2013 .

[15]  Jonathan Cheung-Wai Chan,et al.  An evaluation of ensemble classifiers for mapping Natura 2000 heathland in Belgium using spaceborne angular hyperspectral (CHRIS/Proba) imagery , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[16]  Frederico T. Fonseca,et al.  A Framework for Measuring the Interoperability of Geo-Ontologies , 2006, Spatial Cogn. Comput..

[17]  Eva Klien,et al.  Ontology‐based retrieval of geographic information , 2006, Int. J. Geogr. Inf. Sci..

[18]  Amit P. Sheth,et al.  The SSN ontology of the W3C semantic sensor network incubator group , 2012, J. Web Semant..

[19]  Krzysztof Janowicz,et al.  Observation‐Driven Geo‐Ontology Engineering , 2012, Trans. GIS.

[20]  Werner Kuhn,et al.  Geospatial Semantics: Why, of What, and How? , 2005, J. Data Semant..

[21]  Silvana Castano,et al.  Geographic Ontology Matching with iG-Match , 2007, SSTD.

[22]  Cecilia Zanni-Merk,et al.  Towards a Semi-automatic Semantic Approach for Satellite Image Analysis , 2013, KES.

[23]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[24]  llsoo Ahn,et al.  Temporal Databases , 1986, Computer.

[25]  Vipul Kashyap,et al.  OBSERVER: An Approach for Query Processing in Global Information Systems Based on Interoperation Across Pre-Existing Ontologies , 2000, Distributed and Parallel Databases.

[26]  D. Niemeijer Developing indicators for environmental policy: data-driven and theory-driven approaches examined by example , 2002 .

[27]  Ioannis Manakos REMOTE SENSING IN EUROPE: STATUS ANALYSIS AND TRENDS FOCUSING ON ENVIRONMENT AND AGRICULTURE , 2013 .

[28]  M. Lutz,et al.  Overcoming semantic heterogeneity in spatial data infrastructures , 2009, Comput. Geosci..

[29]  Caspar A. Mücher,et al.  Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward , 2011 .

[30]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[31]  Isabel F. Cruz,et al.  Structural Alignment Methods with Applications to Geospatial Ontologies , 2008, Trans. GIS.

[32]  Surya S. Durbha,et al.  A framework for semantic reconciliation of disparate earth observation thematic data , 2009, Comput. Geosci..

[33]  Dieter Fensel,et al.  Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information , 1999, DS-8.

[34]  Werner Nutt,et al.  Basic Description Logics , 2003, Description Logic Handbook.

[35]  Andrew U. Frank,et al.  Ontology for Spatio-temporal Databases , 2003, Spatio-Temporal Databases: The CHOROCHRONOS Approach.

[36]  Francesco M. Donini,et al.  Complexity of Reasoning , 2003, Description Logic Handbook.

[37]  Max J. Egenhofer,et al.  Determining Semantic Similarity among Entity Classes from Different Ontologies , 2003, IEEE Trans. Knowl. Data Eng..

[38]  Angela Schwering,et al.  Measuring Semantic Similarity Between Geospatial Conceptual Regions , 2005, GeoS.

[39]  Helen Couclelis,et al.  Ontologies of geographic information , 2010, Int. J. Geogr. Inf. Sci..

[40]  J. Bard,et al.  Ontologies in biology: design, applications and future challenges , 2004, Nature Reviews Genetics.