Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage

[1]  Shufen Zhang,et al.  Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage , 2017 .

[2]  Zhonghao Rao,et al.  Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material , 2017 .

[3]  Gang Chen,et al.  Steam generation under one sun enabled by a floating structure with thermal concentration , 2016, Nature Energy.

[4]  Renyuan Li,et al.  Solar-thermal conversion and thermal energy storage of graphene foam-based composites. , 2016, Nanoscale.

[5]  Xiaoyan Zhang,et al.  Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials , 2016, Nature Communications.

[6]  Zhongzhen Yu,et al.  Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage , 2016 .

[7]  R. Ruoff,et al.  Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. , 2015, ACS nano.

[8]  Jyeshtharaj B. Joshi,et al.  Solar thermal technologies as a bridge from fossil fuels to renewables , 2015 .

[9]  Peng Zhang,et al.  Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II – Discharging process , 2015 .

[10]  S. Harish,et al.  Thermal conductivity enhancement of lauric acid phase change nanocomposite in solid and liquid state with single-walled carbon nanohorn inclusions , 2015 .

[11]  R. Warzoha,et al.  Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks , 2014 .

[12]  Wei Xia,et al.  Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage , 2014 .

[13]  Hao Xu,et al.  Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating , 2014, Scientific Reports.

[14]  J. Lian,et al.  Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. , 2014, ACS applied materials & interfaces.

[15]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[16]  K. Liao,et al.  From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials , 2014 .

[17]  J. Grossman,et al.  Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. , 2014, Nature chemistry.

[18]  N. Neale Solar energy: Packing heat. , 2014, Nature chemistry.

[19]  R. Ruoff,et al.  Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage , 2014 .

[20]  K. Cen,et al.  Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials , 2013 .

[21]  Shufen Zhang,et al.  Single‐Walled Carbon Nanotube/Phase Change Material Composites: Sunlight‐Driven, Reversible, Form‐Stable Phase Transitions for Solar Thermal Energy Storage , 2013 .

[22]  Chao Gao,et al.  Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon Aerogels , 2013, Advanced materials.

[23]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[24]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[25]  Jinlong Zhu,et al.  Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. , 2012, ACS nano.

[26]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[27]  Shufen Zhang,et al.  Novel organic solar thermal energy storage materials: efficient visible light-driven reversible solid–liquid phase transition , 2012 .

[28]  Guo-An Li,et al.  Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents. , 2012, Nanoscale.

[29]  Dan Zhou,et al.  Review on thermal energy storage with phase change materials (PCMs) in building applications , 2012 .

[30]  Karma R. Sawyer,et al.  Searching for a Better Thermal Battery , 2012, Science.

[31]  J. Grossman,et al.  Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. , 2011, Nano letters.

[32]  Saad Mekhilef,et al.  A review on solar energy use in industries , 2011 .

[33]  Jianjian Wang,et al.  Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions , 2011, Nature communications.

[34]  R. Ruoff,et al.  Graphene-based polymer nanocomposites , 2011 .

[35]  Chao Gao,et al.  Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. , 2010, ACS applied materials & interfaces.

[36]  Ruzhu Wang,et al.  Preparation and thermal characterization of expanded graphite/paraffin composite phase change material , 2010 .

[37]  M. Garshasbi,et al.  A numerical procedure for estimation of the melt depth in laser material processing , 2009 .

[38]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[39]  K. Lafdi,et al.  Carbon nanoadditives to enhance latent energy storage of phase change materials , 2008 .

[40]  Nathan S. Lewis,et al.  Solar energy conversion. , 2007 .

[41]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[42]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[43]  Soteris A. Kalogirou,et al.  The potential of solar industrial process heat applications , 2003 .

[44]  María del Puerto Morales,et al.  Static and dynamic magnetic properties of spherical magnetite nanoparticles , 2003 .

[45]  Ming Li,et al.  Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement , 2015 .

[46]  David M. Bierman,et al.  Concentrating Solar Power. , 2015, Chemical reviews.

[47]  Bingtao Tang,et al.  Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light , 2014 .

[48]  N. Pu,et al.  Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives , 2013 .

[49]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[50]  S. Iniyan,et al.  A review of solar thermal technologies , 2010 .

[51]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[52]  Robert C. Wolpert,et al.  A Review of the , 1985 .