A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars

In this paper, we present an improved theoretical scenario concerning near-infrared and visual magnitudes of RR Lyr variables, as based on up-to-date pulsating models. New relations connecting V and K absolute magnitudeswith periods, mass, luminosity and metal content are discussed separately for fundamental and first-overtone pulsators. We also show that the V -K colours are predicted to supply tight constraints on the pulsator intrinsic luminosity. On this basis, we revisit the case of the prototype variable RR Lyr, showing that the parallax inferred by this new pulsational approach appears in close agreement with Hubble Space Telescope absolute parallax. Moreover, available K and V measurements for field and cluster RR Lyr variables with known reddening and metal content are used to derive a relation connecting the K absolute magnitude to period and metallicity (M K -[Fe/H]-log P) as well as a new calibration of the M V -[Fe/H] relation. The comparison between theoretical prescriptions and observations suggests that RR Lyr stars in the field and in galactic globular clusters (GGCs) should have quite similar evolutionary histories. The comparison between theory and observations also discloses a general agreement that supports the reliability of the current pulsational scenario. On the contrary, current empirical absolute magnitudes based on the Baade-Wesselink (BW) method suggest relations with a zero-point which is fainter than is predicted by pulsation models, together with a milder metallicity dependence. However, preliminary results based on a new calibration of the BW method provided by Cacciari et al. (2000) for RR Cet and SW And appear in a much better agreement with the pulsational predictions.

[1]  Soo-Chang Rey,et al.  CCD Photometry of the Globular Cluster ω Centauri. I. Metallicity of RR Lyrae Stars from Caby Photometry , 2000 .

[2]  M. Marconi,et al.  Theoretical Models for Classical Cepheids. II. Period-Luminosity, Period-Color, and Period-Luminosity-Color Relations , 1998, astro-ph/9809127.

[3]  G. Bono,et al.  Theoretical insights into the RR Lyrae K-band period–luminosity relation , 2001 .

[4]  The Acceleration of the Universe:. Measurements of Cosmological Parameters from Type Ia Supernovae , 2000 .

[5]  R. Stellingwerf,et al.  Synthetic Mean Colors for RR Lyrae Variables , 1995 .

[6]  V. Castellani,et al.  The evolution of He-burning stars - Horizontal and asymptotic branches in Galactic globulars , 1991 .

[7]  Michael D. Albrow,et al.  RV Tauri stars — II. A spectroscopic study , 1997 .

[8]  Gisella Clementini,et al.  Distances, Ages, and Epoch of Formation of Globular Clusters , 1999, astro-ph/9902086.

[9]  R. Merighi,et al.  The Composition of HB Stars: RR Lyrae Variables , 1995 .

[10]  B. Carney,et al.  The Baade-Wesselink method and the distances to RR Lyrae stars. V - The field star DH Pegasi , 1988 .

[11]  Y. Yoshii,et al.  Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample , 1992, astro-ph/0003103.

[12]  A. Sandage The Oosterhoff Period-Metallicity Relation for RR Lyrae Stars at the Blue Fundamental Edge of the Instability Strip. I. , 1993 .

[13]  Garth D. Illingworth,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVI. The Calibration of Population II Secondary Distance Indicators and the Value of the Hubble Constant , 1999, astro-ph/9908192.

[14]  Jacqueline Bergeron,et al.  From extrasolar planets to cosmology: the VLT Opening symposium : proceedings of the ESO Symposium held at Antofagasta, Chile, 1-4 March 1999 , 2000 .

[15]  BVI Time-Series Data of the Galactic Globular Cluster NGC 3201. I. RR Lyrae Stars , 2002, astro-ph/0205219.

[16]  B. Carney,et al.  The Baade-Wesselink Method and the Distances to RR Lyrae Stars. VII. The Field Stars SW Andromedae and DX Delphini and a Comparison of Recent Baade-Wesselink Analyses , 1992 .

[17]  S. Cassisi,et al.  The ‘tip’ of the red giant branch as a distance indicator: results from evolutionary models , 1997, astro-ph/9703186.

[18]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[19]  R. Zinn,et al.  The Metallicity Dependence of RR Lyrae Absolute Magnitudes from Synthetic Horizontal-Branch Models , 1999, astro-ph/9912226.

[20]  V. Castellani,et al.  Theoretical models for helium-burning stars in intermediate-metallicity globular clusters , 1989 .

[21]  C. Heiles,et al.  H I, galaxy counts, and reddening: Variation in the gas-to-dust ratio, the extinction at high galactic latitudes, and a new method for determining galactic reddening , 1978 .

[22]  T. G. Barnes,et al.  Radial velocities and iron abundances of field RR Lyraes. I. , 1997 .

[23]  K. Janes,et al.  The luminosity scale of RR Lyrae stars with the Baade-Wesselink method. II. The absolute magnitudes of 13 field RR Lyrae stars , 1990 .

[24]  Cepheids as Distance Indicators , 1999 .

[25]  A. Weiss,et al.  An updated theoretical scenario for globular cluster stars , 1997, astro-ph/9707180.

[26]  A. Heck,et al.  Post-Hipparcos cosmic candles , 1999 .

[27]  V. Blanco The reddening of Type AB RR Lyrae Stars , 1992 .

[28]  V. Ripepi,et al.  Pulsational MV versus [Fe/H] relation(s) for globular cluster RR Lyrae variables , 2000, astro-ph/0003473.

[29]  W. Jefferys,et al.  Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae , 2001, astro-ph/0110271.

[30]  M. Marconi,et al.  On the pulsation parallax of the variable star RR Lyr , 2002, astro-ph/0204243.

[31]  Kenneth A. Janes,et al.  The Luminosity Scale of RR Lyrae Stars with the Baade-Wesselink Method. III. The Absolute Magnitudes of Four RR Lyrae Stars in the Globular Cluster M4 , 1990 .

[32]  A. J. Longmore,et al.  RR Lyrae stars in globular clusters : better distances from infrared measurements ? , 1986 .

[33]  R. Hardie A Study of RR Lyrae in Three Colors. , 1955 .

[34]  B. Carney,et al.  The Baade-Wesselink method and the distances to RR Lyrae stars. VI: The field stars RS Bootis, TW Herculis, VY Serpentis, and UU Virginis, and the absolute magnitudes of RR Lyrae stars , 1988 .

[35]  B. Carney,et al.  The slope of the RR Lyrae MV−[Fe/H] relation , 1998 .

[36]  M. Feast,et al.  The Cepheid period-luminosity zero-point from Hipparcos trigonometrical parallaxes† , 1997 .

[37]  I. Skillen,et al.  Globular cluster distances from the RR Lyrae log(period) - infrared magnitude relation. , 1990 .

[38]  Filippina Caputo,et al.  The period-magnitude diagram of RR Lyrae stars — I. The controversy about the distance scale , 1997 .

[39]  G. Hill,et al.  The absolute magnitudes of RR Lyrae stars. IV, V445 Ophiuchus, SS Leo and VY Serpentis , 1990 .

[40]  A. Weiss,et al.  GALACTIC GLOBULAR CLUSTER STARS : FROM THEORY TO OBSERVATION , 1998, astro-ph/9811329.

[41]  D. Mcnamara The Slope of the RR Lyrae Variables \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT , 1999 .

[42]  M. Marconi,et al.  The Cepheid Period-Luminosity Relation and the Maser Distance to NGC 4258 , 2001, astro-ph/0110526.

[43]  Carla Cacciari,et al.  On the absolute magnitude of RR Lyrae stars : UU Ceti, RV Phoenicis, and W Tucanae , 1992 .