Design of Ni-based catalysts supported over binary La-Ce oxides: Influence of La/Ce ratio on the catalytic performances in DRM

[1]  Shengping Wang,et al.  Enhanced catalytic performance of Nix-V@HSS catalysts for the DRM reaction: The study of interfacial effects on Ni-VOx structure with a unique yolk-shell structure , 2021 .

[2]  G. Pantaleo,et al.  Ni/La2O3 catalysts for dry reforming of methane: Effect of La2O3 synthesis conditions on the structural properties and catalytic performances , 2021 .

[3]  Jun Wang,et al.  Recent advances during CH4 dry reforming for syngas production: A mini review , 2020 .

[4]  Chao Sun,et al.  Ni/CeO2 Nanoparticles Promoted by Yttrium Doping as Catalysts for CO2 Methanation , 2020 .

[5]  Yong Yan,et al.  High performance Ni catalysts prepared by freeze drying for efficient dry reforming of methane , 2020 .

[6]  L. Cardozo-Filho,et al.  Dry reforming of methane over Ni/MgO–Al2O3 catalysts: Thermodynamic equilibrium analysis and experimental application , 2020 .

[7]  K. Wilson,et al.  Atomically dispersed nickel as coke-resistant active sites for methane dry reforming , 2019, Nature Communications.

[8]  E. R. Losilla,et al.  Relationship between the Structure and Transport Properties in the Ce1- xLa xO2- x/2 System. , 2019, Inorganic chemistry.

[9]  Junfeng Zhang,et al.  Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide , 2019, Applied Catalysis B: Environmental.

[10]  K. Polychronopoulou,et al.  Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction , 2019, Applied Surface Science.

[11]  M. Boaro,et al.  Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation , 2019, Journal of CO2 Utilization.

[12]  M. Erdem Günay,et al.  Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis , 2018 .

[13]  C. Italiano,et al.  Ce0.70La0.20Ni0.10O2-δ catalyst for methane dry reforming: Influence of reduction temperature on the catalytic activity and stability , 2017 .

[14]  Fereshteh Meshkani,et al.  Preparation of mesoporous nanocrystalline 10% Ni/Ce1−xMnx O2 catalysts for dry reforming reaction , 2017 .

[15]  L. Jalowiecki-Duhamel,et al.  Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production , 2017 .

[16]  A. M. Efstathiou,et al.  Effect of support composition on the origin and reactivity of carbon formed during dry reforming of methane over 5wt% Ni/Ce1−xMxO2−δ (M=Zr4+, Pr3+) catalysts , 2016 .

[17]  P. Gélin,et al.  Dry reforming of methane on ceria prepared by modified precipitation route , 2015 .

[18]  G. Pantaleo,et al.  Synthesis and support composition effects on CH4 partial oxidation over Ni–CeLa oxides , 2015 .

[19]  Hong Wang,et al.  Study on the preparation of Ni-La-Ce oxide catalyst for steam reforming of ethanol , 2014 .

[20]  Antonio Vita,et al.  Hydrogen from biogas: Catalytic tri-reforming process with Ni/LaCeO mixed oxides , 2014 .

[21]  J. Nagy,et al.  Effect of support surface on methane dry-reforming catalyst preparation , 2013 .

[22]  Zhonghua Zhu,et al.  Metal–support interface of a novel Ni–CeO2 catalyst for dry reforming of methane , 2013 .

[23]  E. Bartolomeo,et al.  Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane , 2012 .

[24]  Liyi Shi,et al.  Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane , 2012 .

[25]  J. P. Holgado,et al.  Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane , 2010 .

[26]  A. Trovarelli,et al.  Ni/CeO2-ZrO2 catalysts for the dry reforming of methane , 2010 .

[27]  J. P. Holgado,et al.  Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system , 2008 .

[28]  L. Li,et al.  CH4/CO2 reforming over La2NiO4 and 10%NiO/CeO2–La2O3 catalysts under the condition of supersonic jet expansion via cavity ring-down spectroscopic analysis , 2008 .

[29]  A. Valentini,et al.  Hydrogen Production from Ethanol Steam Reforming Over Ni/CeO2 Nanocomposite Catalysts , 2007 .

[30]  J. Assaf,et al.  Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane , 2006 .

[31]  B. Weckhuysen,et al.  Phase segregation in cerium-lanthanum solid solutions. , 2006, The journal of physical chemistry. B.

[32]  A. Bhattacharya,et al.  Catalytic studies on ceria lanthana solid solutions III. Surface segregation and solid state studies , 2003 .

[33]  A. Bhattacharya,et al.  Surface segregation of lanthanum and cerium ions in ceria/lanthana solid solutions: comparison between experimental results and a statistical–mechanical model , 2003 .

[34]  Antonio Monzón,et al.  Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol–gel , 2000 .

[35]  M. Bradford,et al.  The role of metal–support interactions in CO2 reforming of CH4 , 1999 .

[36]  J. Kašpar,et al.  A Temperature-Programmed and Transient Kinetic Study of CO2Activation and Methanation over CeO2Supported Noble Metals , 1997 .

[37]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .

[38]  R. Fréty,et al.  Temperature-programmed reduction: limitation of the technique for determining the extent of reduction of either pure ceria or ceria modified by additiv , 1993 .

[39]  V. Urusov Geometric model for deviations from Vegard's law , 1992 .

[40]  H A Kreutzmann,et al.  [Fundamentals of ceramics]. , 1972, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik.