Fictitious domain approach for numerical modelling of Navier–Stokes equations

This study investigates a fictitious domain model for the numerical solution of various incompressible viscous flows. It is based on the so-called Navier–Stokes/Brinkman and energy equations with discontinuous coefficients all over an auxiliary embedding domain. The solid obstacles or walls are taken into account by a penalty technique. Some volumic control terms are directly introduced in the governing equations in order to prescribe immersed boundary conditions. The implicit numerical scheme, which uses an upwind finite volume method on staggered Cartesian grids, is of second-order accuracy in time and space. A multigrid local mesh refinement is also implemented, using the multi-level Zoom Flux Interface Correction (FIC) method, in order to increase the precision where it is needed in the domain. At each time step, some iterations of the augmented Lagrangian method combined with a preconditioned Krylov algorithm allow the divergence-free velocity and pressure fields be solved for. The tested cases concern external steady or unsteady flows around a circular cylinder, heated or not, and the channel flow behind a backward-facing step. The numerical results are shown in good agreement with other published numerical or experimental data. Copyright © 2000 John Wiley & Sons, Ltd.

[1]  H. Brinkman,et al.  On the permeability of media consisting of closely packed porous particles , 1949 .

[2]  H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .

[3]  A. S. Grove,et al.  An experimental investigation of the steady separated flow past a circular cylinder , 1964, Journal of Fluid Mechanics.

[4]  A. Hamielec,et al.  Numerical Studies of Viscous Flow around Circular Cylinders , 1969 .

[5]  T. J. Hanratty,et al.  Numerical solution for the flow around a cylinder at Reynolds numbers of 40, 200 and 500 , 1969, Journal of Fluid Mechanics.

[6]  R. Hockney The potential calculation and some applications , 1970 .

[7]  B. L. Buzbee,et al.  The direct solution of the discrete Poisson equation on irregular regions , 1970 .

[8]  S. Dennis,et al.  Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100 , 1970, Journal of Fluid Mechanics.

[9]  D. J. Tritton,et al.  A note on vortex streets behind circular cylinders at low Reynolds numbers , 1971, Journal of Fluid Mechanics.

[10]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[11]  R. Bouard,et al.  Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow , 1977, Journal of Fluid Mechanics.

[12]  M. D. Olson,et al.  Numerical studies of the flow around a circular cylinder by a finite element method , 1978 .

[13]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[14]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[15]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[16]  R. Glowinski,et al.  Méthodes de Lagrangien augmenté : applications à la résolution numérique de problèmes aux limites , 1982 .

[17]  B. Armaly,et al.  Experimental and theoretical investigation of backward-facing step flow , 1983, Journal of Fluid Mechanics.

[18]  G. Marchuk,et al.  Fictitious domain and domain decomposition methods , 1986 .

[19]  M. Braza,et al.  Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder , 1986, Journal of Fluid Mechanics.

[20]  G. Karniadakis Numerical simulation of forced convection heat transfer from a cylinder in crossflow , 1988 .

[21]  George Em Karniadakis,et al.  Frequency selection and asymptotic states in laminar wakes , 1989, Journal of Fluid Mechanics.

[22]  Keun-Shik Chang,et al.  Numerical study of the unsteady mixed convection heat transfer from a circular cylinder , 1989 .

[23]  P. Santangelo,et al.  Development of the Mask method for incompressible unsteady flows , 1989 .

[24]  Philippe Angot,et al.  Contribution à l'étude des transferts thermiques dans des systèmes complexes : application aux composants électroniques , 1989 .

[25]  C. Williamson Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers , 1989, Journal of Fluid Mechanics.

[26]  Christoph Börgers,et al.  Domain imbedding methods for the Stokes equations , 1990 .

[27]  O. Widlund,et al.  On finite element domain imbedding methods , 1990 .

[28]  Jean-Paul Caltagirone,et al.  NATURAL CONVECTION THROUGH PERIODIC POROUS MEDIA , 1990 .

[29]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[30]  P. Gresho Incompressible Fluid Dynamics: Some Fundamental Formulation Issues , 1991 .

[31]  George Em Karniadakis,et al.  Onset of three-dimensionality, equilibria, and early transition in flow over a backward-facing step , 1991, Journal of Fluid Mechanics.

[32]  Morteza Gharib,et al.  An experimental study of the parallel and oblique vortex shedding from circular cylinders , 1991, Journal of Fluid Mechanics.

[33]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[34]  Philippe Angot,et al.  Une méthode adaptative de raffinement local : la correction du flux à l'interface , 1992 .

[35]  Modélisation des écoulements tridimensionnels turbulents dans une pale de turbine , 1992 .

[36]  G. Karniadakis,et al.  Three-dimensional dynamics and transition to turbulence in the wake of bluff objects , 1992 .

[37]  L. Sirovich,et al.  Modeling a no-slip flow boundary with an external force field , 1993 .

[38]  J. Dusek,et al.  A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake , 1994, Journal of Fluid Mechanics.

[39]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[40]  P. Angot,et al.  LA METHODE FIC DE RACCORDEMENT CONSERVATIF DE SOUS-DOMAINES EMBOITES POUR UN MODELE DE CIRCULATION OCEANIQUE , 1994 .

[41]  P. Fabrie,et al.  EFFECTIVE DOWNSTREAM BOUNDARY CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1994 .

[42]  J. Caltagirone,et al.  Sur l'intéraction fluide-milieu poreux ; application au calcul des efforts exercés sur un obstacle par un fluide visqueux , 1994 .

[43]  Jacques Periaux,et al.  Numerical simulation and optimal shape for viscous flow by a fictitious domain method , 1995 .

[44]  Simulation des écoulements turbulents et des transferts thermiques en vue de l'optimisation du refroidissement des pales de turbine , 1995 .

[45]  Philippe Angot,et al.  Sur une méthode de raffinement local multigrille pour la résolution des équations de Navier-Stokes , 1995 .

[46]  J. Caltagirone,et al.  Concept de zoom adaptatif en architecture multigrille locale ; étude comparative des méthodes L.D.C., F.A.C. et F.I.C. , 1996 .

[47]  S. Biringen,et al.  Numerical Simulation of a Cylinder in Uniform Flow , 1996 .

[48]  Philippe Angot,et al.  NESTED GRID METHODS FOR AN OCEAN MODEL: A COMPARATIVE STUDY , 1996 .

[49]  Philippe Angot,et al.  Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows , 1999 .

[50]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[51]  P. Angot FINITE VOLUME METHODS FOR NON SMOOTH SOLUTION OF DIFFUSION MODELS;: APPLICATION TO IMPERFECT CONTACT PROBLEMS , 1999 .

[52]  Philippe Angot,et al.  Numerical solution of Navier-Stokes systems , 1999 .

[53]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.