Vacuum brazing TiAl-based intermetallics using novel Ti–Fe–Mn eutectic brazing alloy

[1]  B. He,et al.  Brazeability evaluation of Ti-Zr-Cu-Ni-Co-Mo filler for vacuum brazing TiAl-based alloy , 2019, Transactions of Nonferrous Metals Society of China.

[2]  Yongqing Cai,et al.  Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti-Zr-Cu-Ni amorphous alloy as filler metal , 2017 .

[3]  J. Cao,et al.  Brazing high Nb containing TiAl alloy using Ti–28Ni eutectic brazing alloy: Interfacial microstructure and joining properties , 2015 .

[4]  Li Li,et al.  Vacuum brazing of TiAl-based intermetallics with Ti–Zr–Cu–Ni–Co amorphous alloy as filler metal , 2015 .

[5]  Z. Mirski,et al.  Diffusion brazing of titanium aluminide alloy based on TiAl (γ) , 2013 .

[6]  R. Poprawe,et al.  The effect of heat treatment on crack control and grain refinement in laser beam welded β-solidifying TiAl-based alloy , 2013 .

[7]  C. Dong,et al.  Vacuum brazing of TiAl alloy to 40Cr steel with Ti60Ni22Cu10Zr8 alloy foil as filler metal , 2013 .

[8]  Xiaoguo Song,et al.  Brazing TiAl intermetallics using TiNi-V eutectic brazing alloy , 2012 .

[9]  Xiaoguo Song,et al.  Brazing high Nb containing TiAl alloy using TiNi–Nb eutectic braze alloy , 2012 .

[10]  Yue Zhao,et al.  Effect of post-weld heat treatment on microstructure and properties of Ti-23Al-17Nb alloy laser beam welding joints , 2010 .

[11]  Marc Thomas,et al.  Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering , 2008 .

[12]  Yit‐Tsong Chen,et al.  Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals , 2008 .

[13]  J. Lin,et al.  Effect of fabrication process on microstructure of high Nb containing TiAl alloy , 2008 .

[14]  H. Clemens,et al.  Characteristics of the tensile flow behavior of Ti–46Al–9Nb sheet material – Analysis of thermally activated processes of plastic deformation , 2008 .

[15]  H. Biermann,et al.  Thermo-mechanical fatigue behaviour of a modern γ-TiAl alloy , 2008 .

[16]  Zheng-Wang Li,et al.  Microstructure evolution and reaction mechanism during reactive joining of TiAl intermetallic to TiC cermet using Ti-Al-C-Ni interlayer , 2007 .

[17]  C. Chang,et al.  Infrared brazing Ti–6Al–4V and SP-700 alloys using the Ti–20Zr–20Cu–20Ni braze alloy , 2007 .

[18]  J. Cao,et al.  Joining of TiAl intermetallic by self-propagating high-temperature synthesis , 2006 .

[19]  C. Koo,et al.  Microstructural evolution and shear strength of brazing C103 and Ti–6Al–4V using Ti–20Cu–20Ni–20Zr (wt.%) filler metal , 2006 .

[20]  C. Koo,et al.  Vacuum-furnace brazing of C103 and Ti–6Al–4V with Ti–15Cu–15Ni filler-metal , 2005 .

[21]  S. Jung,et al.  Effects of copper insert layer on the properties of friction welded joints between TiAl and AISI 4140 structural steel , 2004 .

[22]  M. Bacos,et al.  Brazed joints in γ TiAl sheet: microstructure and properties , 2004 .

[23]  A. Chiba,et al.  Diffusion bonding of TiAl alloy to eutectoid steel and its interfacial self-destruction behavior , 2004 .

[24]  R. Shiue,et al.  Infrared brazing of TiAl using Al-based braze alloys , 2003 .

[25]  D. Hu,et al.  Effect of boron addition on tensile ductility in lamellar TiAl alloys , 2002 .

[26]  R. Botten,et al.  Phase transformations in some TiAl-based alloys , 2002 .

[27]  Helmut Clemens,et al.  Designed fully lamellar microstructures in a γ-TiAl based alloy: adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800 °C , 2002 .

[28]  Shyi-Kaan Wu,et al.  Infrared joining of TiAl intermetallics using Ti15Cu15Ni foil—II. The microstructural evolution at high temperature , 1998 .

[29]  Shyi-Kaan Wu,et al.  Infrared joining of TiAl intermetallics using Ti15Cu15Ni foil—I. The microstructure morphologies of joint interfaces , 1998 .

[30]  N. Richards,et al.  Electron beam welding of a Ti–45Al–2Nb–2Mn+0.8 vol.% TiB2 XD alloy , 1997 .

[31]  Pierre Villars,et al.  Handbook of Ternary Alloy Phase Diagrams , 1995 .

[32]  K. Shinozaki,et al.  Diffusion Bonding of Intermetallic Compound TiAl. , 1991 .

[33]  Yy Kim Intermetallic alloys based on gamma titanium aluminide , 1989 .

[34]  Jung G. Lee,et al.  Microstructural and mechanical characteristics of zirconium alloy joints brazed by a Zr–Cu–Al-based glassy alloy , 2015 .

[35]  E. Ganjeh,et al.  Microstructural, mechanical and fractographical study of titanium-CP and Ti–6Al–4V similar brazing with Ti-based filler , 2013 .

[36]  Cao Chun-xiao Diffusion Behavior of Impurity Iron in High Temperature Titanium Alloys and Its Detrimental Effect on Creep Resistance , 2009 .

[37]  V. L. Acoff,et al.  Analysis of gamma titanium aluminide welds produced by gas tungsten arc welding , 2003 .

[38]  Shyi-Kaan Wu,et al.  Infrared joining strength and interfacial microstructures of Ti–48Al–2Nb–2Cr intermetallics using Ti–15Cu–15Ni foil , 1999 .

[39]  W. Baeslack,et al.  Evolution of the weld heat-affected zone microstructure in a Ti-48AI-2Cr-2Nb gamma titanium aluminide , 1994 .

[40]  T. Miyashita,et al.  Friction Welding Characteristics of TiAl Intermetallic Compound , 1994 .

[41]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .