Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal

Stress‐strain trajectories associated with pseudoelastic behavior of a Cu‐19.4 Zn‐13.1 Al (at. %) single crystal at room temperature have been determined experimentally. For a constant cross‐head speed the trajectories and the associated hysteresis behavior are perfectly reproducible; the trajectories exhibit memory properties, dependent only on the values of return points, where transformation direction is reverted. An adapted version of the Preisach model for hysteresis has been implemented to predict the observed trajectories, using a set of experimental first‐order reversal curves as input data. Explicit formulas have been derived giving all trajectories in terms of this data set, with no adjustable parameters. Comparison between experimental and calculated trajectories shows a much better agreement for descending than for ascending paths, an indication of a dissymmetry between the dissipation mechanisms operative in forward and reverse directions of martensitic transformation.

[1]  Isaak D. Mayergoyz,et al.  Hysteresis models from the mathematical and control theory points of view , 1985 .

[2]  Isaak D. Mayergoyz Vector Preisach hysteresis models (invited) , 1988 .

[3]  Edward Della Torre,et al.  Vector Preisach and the moving model , 1988 .

[4]  J. A. Barker,et al.  Magnetic hysteresis and minor loops: models and experiments , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  J. Humbeeck,et al.  THE INFLUENCE OF STRAIN-RATE, AMPLITUDE AND TEMPERATURE ON THE HYSTERESIS OF A PSEUDOELASTIC Cu-Zn-Al SINGLE CRYSTAL , 1981 .

[6]  D. H. Everett,et al.  A general approach to hysteresis. Part 2: Development of the domain theory , 1954 .

[7]  Isaak D. Mayergoyz,et al.  Isotropic vector Preisach model of hysteresis , 1987 .

[8]  E. Della Torre A vector phenomenological model for digital recording , 1987 .

[9]  Edward Della Torre,et al.  Determination of the bilinear product Preisach function , 1988 .

[10]  Jan Van Humbeeck,et al.  Simulation of transformation hysteresis , 1990 .

[11]  D. Jiles,et al.  Theory of ferromagnetic hysteresis (invited) , 1984 .

[12]  V. Torra,et al.  Acoustic emission during the martensitic transformation of small microplates in a CuZnAl alloy , 1987 .

[13]  E. Torre,et al.  Hysteresis modeling: I. Non-congruency , 1987 .

[14]  G. Biorci,et al.  Analytical theory of the behaviour of ferromagnetic materials , 1958 .

[15]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[16]  D. H. Everett A general approach to hysteresis. Part 3.—A formal treatment of the independent domain model of hysteresis , 1954 .

[17]  Lucas Delaey,et al.  Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations: Part 1 Structural and microstructural changes associated with the transformations , 1974 .

[18]  M. Brokate,et al.  Some mathematical properties of the Preisach model for hysteresis , 1989 .

[19]  G. Kádár,et al.  On the Preisach function of ferromagnetic hysteresis , 1987 .

[20]  I. Mayergoyz,et al.  The Preisach model and hysteretic energy losses , 1987 .

[21]  A. Planes,et al.  State equation for shape‐memory alloys: Application to Cu‐Zn‐Al , 1989 .

[22]  D. H. Everett A general approach to hysteresis. Part 4. An alternative formulation of the domain model , 1955 .

[23]  M. Rosen,et al.  On the nature of the thermoelastic martensitic phase transformation in Au-47.5 at.% Cd determined by acoustic emission , 1982 .

[24]  C. M. Wayman,et al.  Experiments on hysteresis in a thermoelastic martensitic transformation , 1976 .

[25]  D. H. Everett,et al.  A general approach to hysteresis , 1952 .

[26]  E. Torre,et al.  Hysteresis modeling: II. Accommodation , 1987 .

[27]  L. C. Brown,et al.  The thermal effect due to stress-induced martensite formation in Β-CuAlNi single crystals , 1980 .

[28]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[29]  I. Mayergoyz,et al.  On numerical implementation of hysteresis models , 1985 .

[30]  J. L. Mcnichols,et al.  Thermodynamics of Nitinol , 1987 .

[31]  Jordi Ortín,et al.  Thermodynamics of Thermoelastic Martensitic Transformations , 1989 .

[32]  Kurt Wiesen,et al.  Vector Preisach modeling , 1987 .

[33]  Dazhi Yang,et al.  On the hysteresis loops and characteristic temperatures of thermoelastic martensitic transformations , 1988 .