Theoretical investigation of ion conduction in three-layered ion-conductor systems: Derivation of the isothermal transient ionic current and frequency-dependent impedance

Ion conduction in three-layered ion-conductor systems is considered. Explicit analytic expressions for the isothermal transient ionic current and frequency-dependent impedance are derived. The analysis includes migration, diffusion and space-charge effects as contributors to the ionic motion. The resulting model allows conduction parameters such as diffusion coefficients and ion concentrations in three different layers to be obtained from one single measurement, either in the time or in the frequency domain. The implications of one or more of the layers being mixed ionic/electronic conductors are discussed, and it is argued that the proposed model provides a useful description of the coupled ionic/electronic motion occurring in such a mixed-conductor system.

[1]  Almerico Murli,et al.  An implementation of a Fourier series method for the numerical inversion of the Laplace transform , 1999, TOMS.

[2]  B. J. Hoenders,et al.  Theoretical solution of the transient current equation for mobile ions in a dielectric film under the influence of a constant electric field , 1984 .

[3]  J. Macdonald Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes , 1953 .

[4]  E. S. Shire,et al.  Classical electricity and magnetism , 1960 .

[5]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[6]  Gholam-Abbas Nazri,et al.  Solid state batteries : materials design and optimization , 1994 .

[7]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[8]  J. Macdonald Small‐Signal AC Response of an Electrochemical Cell with Completely Blocking Electrodes , 1988 .

[9]  A. Azens,et al.  Zr-Ce Oxides as Candidates for Optically Passive Counter Electrodes , 1999 .

[10]  R. Buck General voltage-step responses and impedances of mixed-conductor films and diodes: metal-contact cells with mobile anions or cations , 1989 .

[11]  G. Niklasson,et al.  Electrical Properties of ZrO2 Thin Films , 2002 .

[12]  A. Rockett,et al.  The behaviour of Na implanted into Mo thin films during annealing , 1999 .

[13]  H. Wyld,et al.  Mathematical Methods for Physics , 1976 .

[14]  Andris Azens,et al.  Sputter-deposited nickel oxide for electrochromic applications , 1998 .

[15]  Anders Hjelm,et al.  Recent Advances in Electrochromics for Smart Windows Applications , 1998, Optical Interference Coatings.

[16]  David R. Rosseinsky,et al.  Electrochromism : fundamentals and applications , 1995 .

[17]  B. Steele,et al.  Theory and practice of a powerful technique for electrochemical investigation of solid solution electrode materials , 1980 .

[18]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[19]  C. Wagner,et al.  Equations for transport in solid oxides and sulfides of transition metals , 1975 .

[20]  Robert A. Huggins,et al.  Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films , 1980 .

[21]  W. Estrada,et al.  Electrochromic nickel-oxide-based coatings made by reactive dc magnetron sputtering: preparation and optical properties , 1988 .

[22]  D. Franceschetti,et al.  Theory of small‐signal ac response of solids and liquids with recombining mobile charge , 1978 .

[23]  Naoya Ogata,et al.  Evaluation of ionic mobility and transference number in a polymeric solid electrolyte by isothermal transient ionic current method , 1985 .

[24]  I. Yokota On the Theory of Mixed Conduction with Special Reference to Conduction in Silver Sulfide Group Semiconductors , 1961 .

[25]  P. Bruce,et al.  Solid State Electrochemistry , 1997 .

[26]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[27]  K. Granath,et al.  The effect of NaF on Cu(In, Ga)Se2 thin film solar cells , 2000 .

[28]  D. Franceschetti,et al.  Numerical analysis of electrical response: Statics and dynamics of space‐charge regions at blocking electrodes , 1979 .

[29]  D. Cahen,et al.  Do dopant diffusion and drift decide semiconductor device degradation and dimension limits , 2000 .

[30]  G. Niklasson,et al.  Isothermal transient ionic current as a characterization technique for ion transport in Ta2O5 , 1999 .

[31]  Amulya K. N. Reddy,et al.  Modern Electrochemistry: An Introduction to an Interdisciplinary Area , 1995 .

[32]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[33]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[34]  W. Weppner Electrochemical Transient Investigations of the Diffusion and Concentration of Electrons in Yttria Stabilized Zirconia-Solid Electrolytes , 1976 .

[35]  J. Jamnik,et al.  TRANSPORT ACROSS BOUNDARY LAYERS IN IONIC CRYSTALS PART II: STATIONARY CHEMICAL DIFFUSION , 1998 .

[36]  Göran Frenning,et al.  Theoretical derivation of the isothermal transient ionic current in an ion conductor: Migration, diffusion and space-charge effects , 2001 .

[37]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[38]  J. Jamnik,et al.  Transport across Boundary Layers in Ionic Crystals Part I: General Formalism and Conception , 1997 .