Internal coordinates for molecular dynamics and minimization in structure determination and refinement.

We present a software module which allows one to efficiently perform molecular dynamics and local minimization calculations in internal coordinates when incorporated into a molecular dynamics package. We have implemented a reference interface to the NIH version of the X-PLOR structure refinement package and we show that the module provides superior torsion-angle dynamics functionality relative to the native X-PLOR implementation. The module has been designed in a portable fashion so that interfacing it with other packages should be relatively easy. Other features of the module include the ability to define rather general internal coordinates, an accurate integration algorithm which can automatically adjust the integration step size, and a modular design, which facilitates extending and enhancing the module.

[1]  G M Clore,et al.  Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear overhauser enhancement data and dipolar couplings by rigid body minimization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[3]  Alexey K. Mazur,et al.  Symplectic integration of closed chain rigid body dynamics with internal coordinate equations of motion , 1999 .

[4]  D. Cremer,et al.  General definition of ring puckering coordinates , 1975 .

[5]  J. W. Humberston Classical mechanics , 1980, Nature.

[6]  D. Cremer,et al.  A GENERAL DEFINITION OF RING PUCKERING COORDINATES , 1975 .

[7]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[8]  Abhinandan Jain,et al.  Constant temperature constrained molecular dynamics: The Newton-Euler inverse mass operator method , 1996 .

[9]  E. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .

[10]  A. Gronenborn,et al.  A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. , 1993, Science.

[11]  Sohail Murad,et al.  Singularity free algorithm for molecular dynamics simulation of rigid polyatomics , 1977 .

[12]  A T Brünger,et al.  Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. , 1997, Journal of magnetic resonance.

[13]  Louise Poissant Part I , 1996, Leonardo.

[14]  Edward J. Haug,et al.  A Recursive Formation for Constrained Mechanical Systems Dynamics: Part I, Open Loop Systems , 1987 .

[15]  A M Gronenborn,et al.  Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. , 1998, Journal of magnetic resonance.

[16]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[17]  Abhinandan Jain,et al.  A Spatial Operator Algebra for Manipulator Modeling and Control , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[18]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[19]  S J Remington,et al.  Structural studies of the Escherichia coli signal transducing protein IIAGlc: implications for target recognition. , 1997, Biochemistry.

[20]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[21]  William H. Press,et al.  Numerical recipes in C , 2002 .

[22]  G. Clore,et al.  Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force. , 2000, Journal of magnetic resonance.

[23]  Tamar Schlick,et al.  Efficient Implementation of the Truncated-Newton Algorithm for Large-Scale Chemistry Applications , 1999, SIAM J. Optim..

[24]  G. Marius Clore,et al.  Improving the Packing and Accuracy of NMR Structures with a Pseudopotential for the Radius of Gyration , 1999 .

[25]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[26]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[27]  Abhinandan Jain,et al.  RECURSIVE FLEXIBLE MULTIBODY SYSTEM DYNAMICS USING SPATIAL OPERATORS , 1992 .

[28]  Abhinandan Jain,et al.  A fast recursive algorithm for molecular dynamics simulation , 1993 .

[29]  L. Delbaere,et al.  The 2.0-A resolution structure of Escherichia coli histidine-containing phosphocarrier protein HPr. A redetermination. , 1994, The Journal of biological chemistry.

[30]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[31]  Abhinandan Jain,et al.  Spatial Operator Algebra for multibody system dynamics , 1992 .

[32]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[33]  G M Clore,et al.  Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIAGlucose of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system , 2000, The EMBO journal.

[34]  Abhinandan Jain,et al.  Protein simulations using techniques suitable for very large systems: The cell multipole method for nonbond interactions and the Newton‐Euler inverse mass operator method for internal coordinate dynamics , 1994, Proteins.

[35]  Tamar Schlick,et al.  A truncated Newton minimizer adapted for CHARMM and biomolecular applications , 1994, J. Comput. Chem..

[36]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[37]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[38]  Peter G. Wolynes New methods of structure refinement for macromolecular structure determination by NMR , 1998 .

[39]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[40]  E. Haug,et al.  A recursive formulation constrained mechanical system dynamics. I: Open loop systems , 1987 .

[41]  C D Schwieters,et al.  The VMD-XPLOR visualization package for NMR structure refinement. , 2001, Journal of magnetic resonance.