Neuromagnetism and Its Clinical Applications

This contribution is devoted to the presentation of the latest results in the field of neuromagnetism, namely the application of SQUIDS to the patho-physiological study of the human brain. For completeness sake, these results are preceded by an account, in the form of a tutorial, of the theoretical and experimental aspects of neuromagnetism: the methods of field calculation and source estimation, and an overview of the state-of-the-art instrumentation. A recent review of neuromagnetism, that covers theoretical, experimental and clinical fields, can be found in [1]. Complete and more advanced treatments of the volume conductor effect, of distributed source modelling, and of integration of biomagnetism with Magnetic Resonance Imaging (MRI) and other techniques for medical imaging are published elsewhere in this volume.

[1]  R D Bucholz,et al.  Magnetic source imaging: a review of the Magnes system of biomagnetic technologies incorporated. , 1993, Neurosurgery.

[2]  L. Leinonen,et al.  Auditory evoked potentials and magnetic fields in patients with lesions of the auditory cortex , 1989, Acta neurologica Scandinavica.

[3]  G. Romani,et al.  Auditory evoked magnetic fields and electric potentials , 1990 .

[4]  Risto J. Ilmoniemi,et al.  SQUID magnetometers for low-frequency applications , 1989 .

[5]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[6]  Richard D. Bucholz,et al.  Magnetic Source Imaging , 1993 .

[7]  Akihiko Kandori,et al.  Development of a biomagnetic measurement system for brain research , 1995, IEEE Transactions on Applied Superconductivity.

[8]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[9]  Franca Tecchio,et al.  Neuromagnetic fields of the brain evoked by voluntary movement and electrical stimulation of the index finger , 1995, Brain Research.

[10]  T. Elbert,et al.  Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation , 1995, Nature.

[11]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[12]  R. Hari,et al.  Functional Organization of the Human First and Second Somatosensory Cortices: a Neuromagnetic Study , 1993, The European journal of neuroscience.

[13]  T. Katila,et al.  Noninvasive Functional Localization by Biomagnetic Methods: Part I , 1991 .

[14]  K. Lehnertz,et al.  Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. , 1988, Electroencephalography and clinical neurophysiology.

[15]  A. van Oosterom,et al.  Source parameter estimation in inhomogeneous volume conductors of arbitrary shape , 1989, IEEE Transactions on Biomedical Engineering.

[16]  M. Lynn,et al.  The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations. , 1967, Biophysical journal.

[17]  A. Gevins,et al.  The future of the EEG and MEG. , 1993, Electroencephalography and clinical neurophysiology.

[18]  J. Waldram,et al.  Superconducting Quantum Interference Devices and their Applications , 1982 .

[19]  W. Penfield The Cerebral Cortex of Man , 1950 .

[20]  R. Näätänen,et al.  Attention and mismatch negativity. , 1993, Psychophysiology.

[21]  K. Lehnertz,et al.  Neuromagnetic evidence of an amplitopic organization of the human auditory cortex. , 1989, Electroencephalography and clinical neurophysiology.

[22]  F. H. Lopes da Silva,et al.  MEG, EEG and the integration with Magnetic Resonance Images , 1989 .

[23]  M. Fuchs,et al.  A modular 31-channel SQUID system for biomagnetic measurements , 1993, IEEE Transactions on Applied Superconductivity.

[24]  R. Näätänen,et al.  Stimulus deviance and evoked potentials , 1982, Biological Psychology.

[25]  M. Hämäläinen,et al.  Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. , 1987, Physics in medicine and biology.

[26]  Vittorio Pizzella,et al.  The positioning problem in biomagnetic measurements: A solution for arrays of superconducting sensors , 1987 .

[27]  Jukka Knuutila,et al.  Design considerations for multichannel SQUID magnetometers , 1985 .

[28]  D. Geselowitz On bioelectric potentials in an inhomogeneous volume conductor. , 1967, Biophysical journal.

[29]  D. Geselowitz On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources , 1970 .

[30]  P. M. Rossini,et al.  Short-term brain ‘plasticity’ in humans: transient finger representation changes in sensory cortex somatotopy following ischemic anesthesia , 1994, Brain Research.

[31]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[32]  D. Drung The PTB 83-SQUID system for biomagnetic applications in a clinic , 1995, IEEE Transactions on Applied Superconductivity.

[33]  M. Nicolelis,et al.  Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information , 1993, Nature.

[34]  R Hari,et al.  Cortical somatosensory magnetic responses in multiple sclerosis. , 1992, Electroencephalography and clinical neurophysiology.

[35]  F Mauguière,et al.  A consensus statement on relative merits of EEG and MEG. European Concerted Action on Biomagnetism, Lyon meeting, November 26 and 27, 1991. , 1992, Electroencephalography and clinical neurophysiology.

[36]  J. H. Tripp Physical Concepts and Mathematical Models , 1983 .

[37]  Maria J. Peters,et al.  On the forward and inverse problem for EEG and MEG , 1990 .

[38]  N Nakasato,et al.  Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy in humans. , 1994, Electroencephalography and clinical neurophysiology.

[39]  Guido Torrioli,et al.  28-channel hybrid system for neuromagnetic measurements , 1991 .

[40]  L. Kaufman,et al.  Theory of neuroelectric and neuromagnetic fields , 1990 .

[41]  D. Geselowitz,et al.  Model studies of the magnetocardiogram. , 1973, Biophysical journal.

[42]  Cortical activity evoked by a multichannel cochlear prosthesis. , 1987, Acta oto-laryngologica.

[43]  Sergio N. Erne Analog Filtering Techniques , 1983 .

[44]  Samuel J. Williamson,et al.  Magnetic Fields of the Cerebral Cortex , 1980 .

[45]  D. Cohen,et al.  MEG versus EEG localization test using implanted sources in the human brain , 1990, Annals of neurology.

[46]  A. Ioannides,et al.  Continuous probabilistic solutions to the biomagnetic inverse problem , 1990 .

[47]  G. Stroink,et al.  Magnetocardiographic functional localization using a current dipole in a realistic torso , 1991, IEEE Transactions on Biomedical Engineering.

[48]  Lauri Parkkonen,et al.  A 122-channel whole-cortex SQUID system for measuring the brain's magnetic fields , 1993 .

[49]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[50]  J. Rothwell Principles of Neural Science , 1982 .

[51]  John P. Wikswo Biomagnetic Sources and Their Models , 1989 .

[52]  Cees J. Stok,et al.  The influence of model parameters on EEG/MEG single dipole source estimation , 1987, IEEE Transactions on Biomedical Engineering.

[53]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[54]  M Hoke,et al.  Tonotopic organization of the auditory cortex: pitch versus frequency representation. , 1989, Science.

[55]  M. Lynn,et al.  The Use of Multiple Deflations in the Numerical Solution of Singular Systems of Equations, with Applications to Potential Theory , 1968 .

[56]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[57]  Samuel J. Williamson,et al.  Advances in Biomagnetism , 1990, Springer US.