Structure-activity relationships for the mutagenicity and carcinogenicity of simple and alpha-beta unsaturated aldehydes.

Aldehydes are important industrial compounds that are used for the synthesis of chemicals and pharmaceuticals and as solvents, food additives, and disinfectants. Because of their reactivity, aldehydes are able to interact with electron-rich biological macromolecules and adverse health effects have been reported, including general toxicity, allergenic reactions, mutagenicity, and carcinogenicity. The cost, time, and number of animals necessary to adequately screen these chemicals places serious limitations on the number of aldehydes whose health potential can be studied and points to the need of using alternative methods for assessing, at least in a preliminary way, the risks associated with the use of aldehydes. A method of choice is the study of quantitative structure-activity relationships (QSARs). In the present work, we present QSAR models for the mutagenicity and carcinogenicity of simple aldehydes and alpha-beta unsaturated aldehydes. The models point to the role of electrophilicity, bulkiness, and hydrophobicity in the genotoxic activity of the aldehydes and lend themselves to the prediction of the activity of other untested chemicals of the same class.