From a meso- to micro-scale connectome: array tomography and mGRASP

Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT) and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP) can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing), combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors.

[1]  Daniel Johnston,et al.  Plasticity of dendritic function , 2005, Current Opinion in Neurobiology.

[2]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[3]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[4]  Thomas J. McBride,et al.  Input clustering and the microscale structure of local circuits , 2014, Front. Neural Circuits.

[5]  Sung-Cherl Jung,et al.  Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons , 2007, Neuron.

[6]  H. Seung,et al.  Neuronal Cell Types and Connectivity: Lessons from the Retina , 2014, Neuron.

[7]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[8]  Davi D Bock,et al.  Volume electron microscopy for neuronal circuit reconstruction , 2012, Current Opinion in Neurobiology.

[9]  J DeFelipe,et al.  Estimation of the number of synapses in the cerebral cortex: methodological considerations. , 1999, Cerebral cortex.

[10]  Paul W. Tillberg,et al.  OPTICAL IMAGING Expansion microscopy , 2015 .

[11]  Eugene W. Myers,et al.  Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography , 2013, Front. Neural Circuits.

[12]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[13]  Colin Kehrer,et al.  Altered Excitatory-Inhibitory Balance in the NMDA-Hypofunction Model of Schizophrenia , 2008, Frontiers in molecular neuroscience.

[14]  I. Koerte,et al.  Diffusion Tensor Imaging , 2014 .

[15]  Tianyi Mao,et al.  A comprehensive thalamocortical projection map at the mesoscopic level , 2014, Nature Neuroscience.

[16]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[17]  Javier DeFelipe,et al.  FIB/SEM technology and Alzheimer's disease: three-dimensional analysis of human cortical synapses. , 2013, Journal of Alzheimer's disease : JAD.

[18]  Misha B. Ahrens,et al.  Labeling of active neural circuits in vivo with designed calcium integrators , 2015, Science.

[19]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[20]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[21]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[22]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[23]  Ho Ko,et al.  Emergence of Feature-Specific Connectivity in Cortical Microcircuits in the Absence of Visual Experience , 2014, The Journal of Neuroscience.

[24]  P. Calabresi,et al.  A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine–acetylcholine synaptic balance , 2006, The Lancet Neurology.

[25]  Christos Davatzikos,et al.  Comparative Evaluation of Registration Algorithms in Different Brain Databases With Varying Difficulty: Results and Insights , 2014, IEEE Transactions on Medical Imaging.

[26]  David Grant Colburn Hildebrand,et al.  Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits , 2014, Front. Neural Circuits.

[27]  Karel Svoboda,et al.  Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex , 2011, Neuron.

[28]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[29]  Michael C. Ashby,et al.  Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines , 2011, Neuron.

[30]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[31]  Kazuto Kobayashi,et al.  A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. , 2011, Human gene therapy.

[32]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[33]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[34]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[35]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[36]  Kristina D. Micheva,et al.  Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers , 2010, Neuron.

[37]  E. Susaki,et al.  Whole-Brain Imaging with Single-Cell Resolution Using Chemical Cocktails and Computational Analysis , 2014, Cell.

[38]  Kazuto Kobayashi,et al.  Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. , 2011, Human gene therapy.

[39]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[40]  Lars Meyer,et al.  3D reconstruction of high‐resolution STED microscope images , 2008, Microscopy research and technique.

[41]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Concha Bielza,et al.  Three-Dimensional Spatial Distribution of Synapses in the Neocortex: A Dual-Beam Electron Microscopy Study , 2013, Cerebral cortex.

[43]  H. Seung,et al.  Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging , 2011, Nature Methods.

[44]  Takeshi Imai,et al.  SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction , 2013, Nature Neuroscience.

[45]  N. Renier,et al.  iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging , 2014, Cell.

[46]  D. Copenhagen,et al.  Vesicular Glutamate Transporters 1 and 2 Target to Functionally Distinct Synaptic Release Sites , 2004, Science.

[47]  Jinhyun Kim,et al.  Improved synapse detection for mGRASP-assisted brain connectivity mapping , 2012, Bioinform..

[48]  G. Knott,et al.  Ultrastructurally-smooth thick partitioning and volume stitching for larger-scale connectomics , 2015, Nature Methods.

[49]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[50]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[51]  Mike Heilemann,et al.  Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples , 2012, PloS one.

[52]  Tianyi Mao,et al.  Live Imaging of Endogenous PSD-95 Using ENABLED: A Conditional Strategy to Fluorescently Label Endogenous Proteins , 2014, The Journal of Neuroscience.

[53]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[54]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[55]  Brad E. Pfeiffer,et al.  The State of Synapses in Fragile X Syndrome , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[56]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[57]  ZhaoTing,et al.  Improved synapse detection for mGRASP-assisted brain connectivity mapping , 2012 .

[58]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[59]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[60]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[61]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[62]  M. Scanziani,et al.  Equalizing Excitation-Inhibition Ratios across Visual Cortical Neurons , 2014, Nature.

[63]  Y. Mishchenko On Optical Detection of Densely Labeled Synapses in Neuropil and Mapping Connectivity with Combinatorially Multiplexed Fluorescent Synaptic Markers , 2010, PloS one.

[64]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[65]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[66]  Hanchuan Peng,et al.  mGRASP enables mapping mammalian synaptic connectivity with light microscopy , 2011, Nature Methods.

[67]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[68]  Steffen Prohaska,et al.  Large-Scale Automated Histology in the Pursuit of Connectomes , 2011, The Journal of Neuroscience.

[69]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[70]  Ian R. Wickersham,et al.  New technologies for imaging synaptic partners , 2012, Current Opinion in Neurobiology.

[71]  Mark T. Harnett,et al.  Potassium Channels Control the Interaction between Active Dendritic Integration Compartments in Layer 5 Cortical Pyramidal Neurons , 2013, Neuron.

[72]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[73]  Javier DeFelipe,et al.  Counting Synapses Using FIB/SEM Microscopy: A True Revolution for Ultrastructural Volume Reconstruction , 2009, Front. Neuroanat..

[74]  Mayeul Collot,et al.  New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. , 2014, Biochimica et biophysica acta.

[75]  Wade G Regehr,et al.  Short-term forms of presynaptic plasticity , 2011, Current Opinion in Neurobiology.

[76]  Charles F Stevens,et al.  Synaptic plasticity , 1998, Current Biology.

[77]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[78]  G. Shepherd,et al.  Geometric and functional organization of cortical circuits , 2005, Nature Neuroscience.

[79]  Bartlett W. Mel,et al.  Cortical rewiring and information storage , 2004, Nature.

[80]  Jinhyun Kim,et al.  neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the SWC Format 123 , 2015, eNeuro.

[81]  J. Sanes,et al.  Improved tools for the Brainbow toolbox. , 2013, Nature methods.

[82]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[83]  Bryan M. Hooks,et al.  Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas , 2011, PLoS biology.

[84]  Karel Svoboda,et al.  Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging , 2006, Nature Neuroscience.

[85]  D. Johnston,et al.  Active dendrites: colorful wings of the mysterious butterflies , 2008, Trends in Neurosciences.

[86]  Jinhyung Kim,et al.  Mapping mammalian synaptic connectivity , 2013, Cellular and Molecular Life Sciences.

[87]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[88]  Christian Rosenmund,et al.  Vesicular Glutamate Transporter VGLUT2 Expression Levels Control Quantal Size and Neuropathic Pain , 2006, The Journal of Neuroscience.

[89]  Daniel N. Hill,et al.  Primary Motor Cortex Reports Efferent Control of Vibrissa Motion on Multiple Timescales , 2011, Neuron.

[90]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[91]  A. Reiner,et al.  Confocal laser scanning microscopy and ultrastructural study of VGLUT2 thalamic input to striatal projection neurons in rats , 2013, The Journal of comparative neurology.

[92]  Jozsef Csicsvari,et al.  Activity-Dependent Control of Neuronal Output by Local and Global Dendritic Spike Attenuation , 2009, Neuron.

[93]  F Edward Dudek,et al.  Epileptogenesis: A New Twist on the Balance of Excitation and Inhibition , 2009, Epilepsy currents.

[94]  Sonja M. Wojcik,et al.  Interplay between VGLUT Isoforms and Endophilin A1 Regulates Neurotransmitter Release and Short-Term Plasticity , 2011, Neuron.

[95]  Karl J. Friston,et al.  Synaptic Plasticity and Dysconnection in Schizophrenia , 2006, Biological Psychiatry.

[96]  Derek K. Jones,et al.  Diffusion tensor imaging. , 2011, Methods in molecular biology.

[97]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[98]  Jeff W Lichtman,et al.  Why not connectomics? , 2013, Nature Methods.

[99]  Partha P. Mitra,et al.  The Circuit Architecture of Whole Brains at the Mesoscopic Scale , 2014, Neuron.

[100]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[101]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[102]  J. Storm-Mathisen,et al.  Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters , 2004, The Journal of comparative neurology.

[103]  Christian Rosenmund,et al.  MeCP2 Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number , 2007, Neuron.

[104]  Fred A. Hamprecht,et al.  Automated Detection and Segmentation of Synaptic Contacts in Nearly Isotropic Serial Electron Microscopy Images , 2011, PloS one.

[105]  Edward G Jones,et al.  Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse , 2008, The Journal of comparative neurology.

[106]  Timothy E. J. Behrens,et al.  Human connectomics , 2012, Current Opinion in Neurobiology.

[107]  T. Hökfelt,et al.  Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury , 2007, Neuroscience.

[108]  J. Magee,et al.  Structured Synaptic Connectivity between Hippocampal Regions , 2014, Neuron.

[109]  Linqing Feng,et al.  Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain , 2014, Nature Protocols.

[110]  Christian Rosenmund,et al.  An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[112]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.