The Wick-Malliavin Approximation of Elliptic Problems with Log-Normal Random Coefficients

In this work, we discuss the approximation of elliptic problems with log-normal random coefficients using the Wick product and the Mikulevicius--Rozovskii formula. The main idea is that the multiplication between the log-normal coefficient and the gradient of the solution can be regarded as a Taylor-like expansion in terms of the Wick product and the Malliavin derivative. For the classical model, the coefficients of Wiener chaos expansion are fully coupled together in the uncertainty propagator, while the Wick--Malliavin model yields an uncertain propagator with weak coupling in the upper-triangular part for a relatively small truncation order in the Mikulevicius--Rozovskii formula. In this paper we focus on the difference between the classical model and the Wick--Malliavin model with respect to the standard deviation of the underlying Gaussian random process. Both theoretical and numerical discussions are presented.

[1]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[2]  Contents , 1997, Current Opinion in Neurobiology.

[3]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[4]  Daniele Venturi,et al.  Wick–Malliavin approximation to nonlinear stochastic partial differential equations: analysis and simulations , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[6]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[7]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[8]  T. G. Theting,et al.  Solving wick-stochastic boundary value problems using a finite element method , 2000 .

[9]  Gjermund Våge,et al.  Variational methods for PDEs aplied to stochastic partial differential equations , 1998 .

[10]  A. Debussche,et al.  Weak truncation error estimates for elliptic PDEs with lognormal coefficients , 2013 .

[11]  X. Fernique Regularite des trajectoires des fonctions aleatoires gaussiennes , 1975 .

[12]  B. Rozovskii,et al.  On unbiased stochastic Navier–Stokes equations , 2010, 1008.3554.

[13]  Juan Galvis,et al.  Approximating Infinity-Dimensional Stochastic Darcy's Equations without Uniform Ellipticity , 2009, SIAM J. Numer. Anal..

[14]  G. Karniadakis,et al.  A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus , 2009, Proceedings of the National Academy of Sciences.

[15]  Sergey V. Lototsky,et al.  Elliptic equations of higher stochastic order , 2010 .

[16]  Stochastic Differential Equations Driven by Purely Spatial Noise , 2005, math/0505551.

[17]  B. Rozovskii,et al.  On generalized Malliavin calculus , 2012 .

[18]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[19]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[20]  Hui-Hsiung Kuo,et al.  White noise distribution theory , 1996 .

[21]  C. J. Gittelson STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .

[22]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[23]  Xiaoliang Wan,et al.  A note on stochastic elliptic models , 2010 .

[24]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .