Polymer-derived Ta4HfC5 nanoscale ultrahigh-temperature ceramics: Synthesis, microstructure and properties

[1]  O. Guillon,et al.  SiC/HfyTa1−yCxN1−x/C ceramic nanocomposites with HfyTa1−yCxN1−x-carbon core–shell nanostructure and the influence of the carbon-shell thickness on electrical properties , 2018 .

[2]  A. Santagata,et al.  Formation of Titanium Carbide (TiC) and TiC@C core-shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid. , 2017, Journal of colloid and interface science.

[3]  Song Wang,et al.  Preparation and Characterization of UltraHigh‐Temperature Ternary Ceramics Ta4HfC5 , 2016 .

[4]  N. Nicoloso,et al.  Microwave Absorption of SiC/HfCxN1−x/C Ceramic Nanocomposites with HfCxN1−x‐Carbon Core–Shell Particles , 2016 .

[5]  William E Lee,et al.  Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering , 2016 .

[6]  F. Golestani-Fard,et al.  Processing, phase evaluation and mechanical properties of MoSi2 doped 4TaC–HfC based UHTCs consolidated by spark plasma sintering , 2016 .

[7]  O. Guillon,et al.  Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites. , 2014, Nanoscale.

[8]  B. Cook,et al.  Reduced-temperature processing and consolidation of ultra-refractory Ta4HfC5 , 2013 .

[9]  T. Zhao,et al.  Synthesis of ZrC–SiC Powders by a Preceramic Solution Route , 2013 .

[10]  Y. Sakka,et al.  Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures , 2013 .

[11]  T. Zhao,et al.  Synthesis, Characterization, and Microstructure of Hafnium Boride‐Based Composite Ceramics Via Preceramic Method , 2013 .

[12]  F. Golestani-Fard,et al.  Pressureless sintering of Ta0.8Hf0.2C UHTC in the presence of MoSi2 , 2013 .

[13]  Docheon Ahn,et al.  Pyro-Synthesis of Functional Nanocrystals , 2012, Scientific Reports.

[14]  Ralf Riedel,et al.  Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. , 2012, Chemical Society reviews.

[15]  T. Zhao,et al.  Synthesis of nano-crystalline ZrB2/ZrC/SiC ceramics by liquid precursors , 2012 .

[16]  N. Simonenko,et al.  Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology , 2011 .

[17]  N. Simonenko,et al.  Low-temperature synthesis of nanodispersed titanium, zirconium, and hafnium carbides , 2011 .

[18]  M. M. Lucchese,et al.  Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder , 2010 .

[19]  H. Kleebe,et al.  Polymer‐Derived Silicon Oxycarbide/Hafnia Ceramic Nanocomposites. Part I: Phase and Microstructure Evolution During the Ceramization Process , 2010 .

[20]  Geyang Li,et al.  Microstructure and mechanical properties of hafnium carbide coatings synthesized by reactive magnetron sputtering , 2010 .

[21]  T. Zhao,et al.  One pot synthesis of a soluble polymer for zirconium carbide , 2010 .

[22]  H. Kleebe,et al.  Polymer-Derived SiOC/ZrO2 Ceramic Nanocomposites with Excellent High-Temperature Stability , 2010 .

[23]  Geyang Li,et al.  Microstructure and mechanical properties of vanadium carbide coatings synthesized by reactive magnetron sputtering , 2009 .

[24]  H. Kleebe,et al.  Sintering Mechanisms of Zirconium and Hafnium Carbides Doped with MoSi2 , 2009 .

[25]  D. Sciti,et al.  Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol% TaSi_2 or MoSi_2 , 2009 .

[26]  G. Hilmas,et al.  Densification and mechanical properties of TaC-based ceramics , 2009 .

[27]  Weihua Tang,et al.  Route to transition metal carbide nanoparticles through cyanamide and metal oxides , 2008 .

[28]  B. V. Gabrelian,et al.  Electronic structure of cubic HfxTa1–xCy carbides from X-ray spectroscopy studies and cluster self-consistent calculations , 2008 .

[29]  M. Nygren,et al.  Densification and Mechanical Behavior of HfC and HfB2 Fabricated by Spark Plasma Sintering , 2008 .

[30]  Raffaele Savino,et al.  Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials , 2008 .

[31]  G. Hilmas,et al.  Pressureless sintering of carbon-coated zirconium diboride powders , 2007 .

[32]  N. Medvedeva,et al.  Physical properties and electronic structure of TaC-HfC solid solutions , 2007 .

[33]  Anubhav Jain,et al.  Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors , 2004 .

[34]  Mark M. Opeka,et al.  Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and zirconium Compounds , 1999 .

[35]  H. Gleiter,et al.  Nanostructured Materials: State of the Art and Perspectives , 1995 .

[36]  Carl C. M. Wu,et al.  Hardness-grain-size relations in ceramics , 1994 .

[37]  F. Demichelis,et al.  Electrical conductivity of amorphous carbon and amorphous hydrogenated carbon , 1991 .

[38]  K. Niihara,et al.  Mechanical and Electrical Properties of Silicon Nitride–Silicon Carbide Nanocomposite Material , 1991 .

[39]  L. Toth Transition Metal Carbides and Nitrides , 1971 .

[40]  E. Storms The Refractory carbides , 1967 .

[41]  D. Deadmore Vaporization of Tantalum Carbide-hafnium Carbide Solid Solutions at 2500 Deg to 3000 Deg k , 1965 .