Low memory and low complexity iterative schemes for a nonsymmetric algebraic Riccati equation arising from transport theory

Abstract We reconsider Newton’s method and two fixed-point methods for finding the minimal positive solution of a nonsymmetric algebraic Riccati equation arising from transport theory. We rewrite the subproblem of the Newton and fixed-point iterative schemes into an equivalent form with some special structure. By the use of the particular structure of the subproblem, we then present low memory and low complexity versions of these iterative methods with a factored alternating-direction-implicit iteration. Some properties of eigenvalues for iterative coefficient matrices in solving the subproblem are derived and the convergence of the proposed methods is established. Numerical experiments show that the new iterative schemes are highly efficient to obtain the minimal positive solution. The proposed low memory and low complexity Newton’s method is particularly efficient for solving large scale Riccati equation arising from transport theory.

[1]  Wen-Wei Lin,et al.  A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation , 2006, Numerische Mathematik.

[2]  Chun-Hua Guo,et al.  Nonsymmetric Algebraic Riccati Equations and Wiener-Hopf Factorization for M-Matrices , 2001, SIAM J. Matrix Anal. Appl..

[3]  Peter Benner,et al.  On the Parameter Selection Problem in the Newton-ADI Iteration for Large Scale Riccati Equations , 2007 .

[4]  Paul Nelson,et al.  GLOBAL EXISTENCE, ASYMPTOTICS AND UNIQUENESS FOR THE REFLECTION KERNEL OF THE ANGULARLY SHIFTED TRANSPORT-EQUATION , 1995 .

[5]  Jacob K. White,et al.  Low Rank Solution of Lyapunov Equations , 2002, SIAM J. Matrix Anal. Appl..

[6]  Jong Juang,et al.  Iterative solution for a certain class of algebraic matrix riccati equations arising in transport theory , 1993 .

[7]  Zhong-Zhi Bai,et al.  Fast Iterative Schemes for Nonsymmetric Algebraic Riccati Equations Arising from Transport Theory , 2008, SIAM J. Sci. Comput..

[8]  Bruno Iannazzo,et al.  A Fast Newton's Method for a Nonsymmetric Algebraic Riccati Equation , 2008, SIAM J. Matrix Anal. Appl..

[9]  Ren-Cang Li Solving secular equations stably and efficiently , 1993 .

[10]  Federico Poloni,et al.  From Algebraic Riccati equations to unilateral quadratic matrix equations: old and new algorithms , 2007, Numerical Methods for Structured Markov Chains.

[11]  Zhong-Zhi Bai,et al.  Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations , 2006, Numer. Linear Algebra Appl..

[12]  Chun-Hua Guo,et al.  Convergence rates of some iterative methods for nonsymmetric algebraic Riccati equations arising in transport theory , 2010 .

[13]  C. Parwada,et al.  Jatropha curcas Production in Zimbabwe: Uses, Challenges and the Way Forward , 2011 .

[14]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[15]  Ben Silver,et al.  Elements of the theory of elliptic functions , 1990 .

[16]  Jonq Juang,et al.  Existence of algebraic matrix Riccati equations arising in transport theory , 1995 .

[17]  E. Wachspress Optimum Alternating-Direction-Implicit Iteration Parameters for a Model Problem , 1962 .

[18]  Victor Y. Pan,et al.  Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations , 2005, Numerische Mathematik.

[19]  Chun-Hua Guo,et al.  On the Doubling Algorithm for a (Shifted) Nonsymmetric Algebraic Riccati Equation , 2007, SIAM J. Matrix Anal. Appl..

[20]  Paul Nelson,et al.  Convergence of a certain monotone iteration in the reflection matrix for a nonmultiplying half-space , 1984 .

[21]  Yimin Wei,et al.  A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport theory , 2006, Appl. Math. Comput..

[22]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[23]  Alan J. Laub,et al.  On the Iterative Solution of a Class of Nonsymmetric Algebraic Riccati Equations , 2000, SIAM J. Matrix Anal. Appl..

[24]  Wen-Wei Lin,et al.  Nonsymmetric Algebraic Riccati Equations and Hamiltonian-like Matrices , 1998, SIAM J. Matrix Anal. Appl..

[25]  Jonq Juang,et al.  Convergence of an iterative technique for algebraic Matrix Riccati equations and applications to transport theory , 1992 .

[26]  Eugene L. Wachspress,et al.  The ADI Model Problem , 2013 .

[27]  Federico Poloni,et al.  Fast solution of a certain Riccati equation through Cauchy-like matrices , 2009 .

[28]  Bo Yu,et al.  On iterative methods for the quadratic matrix equation with M-matrix , 2011, Appl. Math. Comput..

[29]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[30]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[31]  Z. Bai ON HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS * , 2010 .

[32]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[33]  Volker Mehrmann,et al.  Explicit Solutions for a Riccati Equation from Transport Theory , 2008, SIAM J. Matrix Anal. Appl..

[34]  Yong-Hua Gao,et al.  On inexact Newton methods based on doubling iteration scheme for non‐symmetric algebraic Riccati equations , 2011, Numer. Linear Algebra Appl..

[35]  Lin-Zhang Lu Newton iterations for a non-symmetric algebraic Riccati equation , 2005, Numer. Linear Algebra Appl..

[36]  Peter Benner,et al.  On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..

[37]  Nicholas J. Higham,et al.  Iterative Solution of a Nonsymmetric Algebraic Riccati Equation , 2007, SIAM J. Matrix Anal. Appl..

[38]  Thomas Kailath,et al.  Fast Gaussian elimination with partial pivoting for matrices with displacement structure , 1995 .

[39]  Bo,et al.  CONVERGENCE OF THE CYCLIC REDUCTION ALGORITHM FOR A CLASS OF WEAKLY OVERDAMPED QUADRATICS , 2012 .

[40]  Gene H. Golub,et al.  Matrix computations , 1983 .

[41]  Linzhang Lu Solution Form and Simple Iteration of a Nonsymmetric Algebraic Riccati Equation Arising in Transport Theory , 2005, SIAM J. Matrix Anal. Appl..