EC Theory — “in Theory”

We present a personal overview of EC theory. In particular, we try to show that recent theoretical developments have pointed the way to a grand unification of different branches of EC, such as Genetic Algorithms and Genetic Programming, and also different theoretical models, such as the Vose model and Holland’s Schema theorem. We give a broad outline of this unification program showing how the different elements above are related to each other via changes of representation on the space of EC models. Based on our work we pose a series of challenges which if met, we believe, will lead to a much deeper understanding of EC and the various types of evolutionary algorithm.

[1]  P. K. Chawdhry,et al.  Soft Computing in Engineering Design and Manufacturing , 1998, Springer London.

[2]  C. Stephens Some exact results from a coarse grained formulation of genetic dynamics , 2001, nlin/0105029.

[3]  Peter Nordin,et al.  Evolutionary program induction of binary machine code and its applications , 1997 .

[4]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[5]  Riccardo Poli,et al.  General Schema Theory for Genetic Programming with Subtree-Swapping Crossover , 2001, EuroGP.

[6]  Riccardo Poli,et al.  Exact Schema Theorem and Effective Fitness for GP with One-Point Crossover , 2000, GECCO.

[7]  Alden H. Wright,et al.  A Schema-Theory-Based Extension of Geiringer's Theorem for Linear GP and Varialbe-length GAs under Homologous Crossover , 2002, FOGA.

[8]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[9]  Christian M. Reidys,et al.  Neutrality in fitness landscapes , 2001, Appl. Math. Comput..

[10]  Christopher R. Stephens,et al.  Self-Adaptation in Evolving Systems , 1997, Artificial Life.

[11]  W. A. Greene,et al.  A Non-Linear Schema Theorem for Genetic Algorithms , 2000, GECCO.

[12]  Christopher R. Stephens,et al.  Effective Fitness as an Alternative Paradigm for Evolutionary Computation I: General Formalism , 2000, Genetic Programming and Evolvable Machines.

[13]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[14]  Riccardo Poli,et al.  Fitness Causes Bloat , 1998 .

[15]  Christopher R. Stephens,et al.  Schemata Evolution and Building Blocks , 1999, Evolutionary Computation.

[16]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[17]  R. Poli,et al.  Exact schema theory for GP and variable-length GAs with homologous crossover , 2001 .

[18]  Peter Nordin,et al.  Complexity Compression and Evolution , 1995, ICGA.

[19]  H. Waelbroeck,et al.  Effective degrees of freedom in genetic algorithms , 1998 .

[20]  David B. Fogel,et al.  Schema processing under proportional selection in the presence of random effects , 1997, IEEE Trans. Evol. Comput..

[21]  L. Darrell Whitley,et al.  An Executable Model of a Simple Genetic Algorithm , 1992, FOGA.

[22]  H. Waelbroeck,et al.  Emergence of algorithmic language in genetic systems. , 1998, Bio Systems.

[23]  Christopher R. Stephens,et al.  Schemata as Building Blocks: Does Size Matter? , 2000, FOGA.

[24]  John H. Holland,et al.  Building Blocks, Cohort Genetic Algorithms, and Hyperplane-Defined Functions , 2000, Evolutionary Computation.

[25]  Daniel E. Goldberg The design of innovation: Lessons from genetic algorithms , 1998 .

[26]  Rafael A. Perez,et al.  The schema theorem considered insufficient , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Riccardo Poli,et al.  General Schema Theory for Genetic Programming with Subtree-Swapping Crossover: Part I , 2003, Evolutionary Computation.

[29]  Alden H. Wright,et al.  Allele Diffusion in Linear Genetic Programming and Variable-Length Genetic Algorithms with Subtree Crossover , 2002, EuroGP.

[30]  J. M. Vargas,et al.  Symmetry breaking and adaptation: evidence from a 'toy model' of a virus. , 1997, Bio Systems.

[31]  Riccardo Poli,et al.  Exact Schema Theory for Genetic Programming and Variable-Length Genetic Algorithms with One-Point Crossover , 2001, Genetic Programming and Evolvable Machines.

[32]  C. Stephens Effect of mutation and recombination on the genotype-phenotype map , 1999, nlin/0006051.

[33]  R. Buerger The Mathematical Theory of Selection, Recombination, and Mutation , 2000 .

[34]  Riccardo Poli,et al.  Schema Theory for Genetic Programming with One-Point Crossover and Point Mutation , 1997, Evolutionary Computation.

[35]  David B. Fogel,et al.  The Schema Theorem and the Misallocation of Trials in the Presence of Stochastic Effects , 1998, Evolutionary Programming.

[36]  R. Poli Why the schema theorem is correct also in the presence of stochastic effects , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[37]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[38]  Conor Ryan,et al.  Grammatical Evolution , 2001, Genetic Programming Series.

[39]  Prügel-Bennett,et al.  Analysis of genetic algorithms using statistical mechanics. , 1994, Physical review letters.

[40]  Alden H. Wright,et al.  On The Search Biases Of Homologuous Crossover In Linear Genetic Programming And Variable-length Genetic Algorithms , 2002, GECCO.

[41]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[42]  Riccardo Poli,et al.  Using Schema Theory To Explore Interactions Of Multiple Operators , 2002, GECCO.

[43]  David B. Fogel,et al.  Evolution-ary Computation 1: Basic Algorithms and Operators , 2000 .

[44]  C. R. Stephens,et al.  "Effective" fitness landscapes for evolutionary systems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[45]  Christopher R. Stephens,et al.  Effective Degrees of Freedom in Genetic Algorithms and the Block Hypothesis , 1997, ICGA.

[46]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[47]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Christopher R. Stephens,et al.  Landscapes and Effective Fitness , 2003 .

[49]  S Wright,et al.  "Surfaces" of selective value. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[50]  John J. Grefenstette,et al.  Deception Considered Harmful , 1992, FOGA.

[51]  C. Stephens The Renormalization Group and the Dynamics of Genetic Systems , 2002, cond-mat/0210271.

[52]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[53]  Christopher R. Stephens,et al.  Effective Fitness as an Alternative Paradigm for Evolutionary Computation II: Examples and Applications , 2001, Genetic Programming and Evolvable Machines.