Dynamically reconfigurable metamaterials for shielding and absorption in the GHz range

A dynamically reconfigurable metamaterial is presented where the complex frequency dependent permittivity of a silicon substrate is modified in the GHz range by an incident optical (infrared, IR) plane wave; the IR allows the generation of electron-hole pairs, thus modifying the substrate dielectric properties. Moreover the IR is spatially modulated to generate different permittivities along the two polarization directions thus achieving anisotropic material. The slab response is studied in terms of GHz power transmitted, reflected, and absorbed by the metamaterial.

[1]  F. Moglie,et al.  Broadband Electromagnetic Absorbers Using Carbon Nanostructure-Based Composites , 2011, IEEE Transactions on Microwave Theory and Techniques.

[2]  B. R. Patton Solid State Physics: Solid State Physics , 2001 .

[3]  J. Drewniak,et al.  From Maxwell Garnett to Debye Model for Electromagnetic Simulation of Composite Dielectrics Part I: Random Spherical Inclusions , 2011, IEEE Transactions on Electromagnetic Compatibility.

[4]  J. Drewniak,et al.  Homogenized Permittivity of Composites with Aligned Cylindrical Inclusions for Causal Electromagnetic Simulations , 2012 .

[5]  G. M. Smith,et al.  Optical Modulation of Millimeter-Wave Beams Using a Semiconductor Substrate , 2012, IEEE Transactions on Microwave Theory and Techniques.

[7]  F. Abelès,et al.  Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry , 1993 .

[8]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[9]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[10]  Zach DeVito,et al.  Opt , 2017 .

[11]  Lagarkov,et al.  Electromagnetic properties of composites containing elongated conducting inclusions. , 1996, Physical review. B, Condensed matter.

[12]  A. Ciattoni,et al.  Terahertz optically tunable dielectric metamaterials without microfabrication. , 2012, Optics letters.

[13]  Sensitivity analysis of electromagnetic transmission, reflection and absorption coefficients for biphasic composite structures , 2014, 2014 International Symposium on Electromagnetic Compatibility.

[14]  Didier Felbacq,et al.  Commentary: Plasmons go quantum , 2008 .

[15]  J. Drewniak,et al.  DERIVATION OF HOMOGENEOUS PERMITTIVITY OF COMPOSITE MATERIALS WITH ALIGNED CYLINDRI- CAL INCLUSIONS FOR CAUSAL ELECTROMAGNETIC SIMULATIONS , 2012 .

[16]  F. Paulis,et al.  Reconfigurable photoinduced metamaterials in the microwave regime , 2014, 1409.4255.

[17]  A. Orlandi,et al.  From Maxwell Garnett to Debye Model for Electromagnetic Simulation of Composite Dielectrics—Part II: Random Cylindrical Inclusions , 2012, IEEE Transactions on Electromagnetic Compatibility.

[18]  M. J. Cryan,et al.  Investigation of an optically reconfigurable plasma for silicon based microwave applications , 2013, 2013 European Microwave Conference.

[19]  R. W. Schwartz,et al.  Maxwell Garnett Rule for Dielectric Mixtures with Statistically Distributed Orientations of Inclusions , 2009 .

[20]  O. Ouchetto,et al.  Modeling of 3-D periodic multiphase composites by homogenization , 2006, IEEE Transactions on Microwave Theory and Techniques.

[21]  D. M. Riffe Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements , 2002 .

[22]  Antonio Orlandi,et al.  Design of Homogeneous and Composite Materials From Shielding Effectiveness Specifications , 2014, IEEE Transactions on Electromagnetic Compatibility.