High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser.

High-power supercontinua are demonstrated in highly nonlinear, dispersion-shifted fibers with a continuous-wave Raman fiber laser. Supercontinuum growth is experimentally studied under different combinations of fiber length and launch power to show output powers as high as 3.2 W and bandwidths greater than 544 nm. Modulation instability (MI) is observed to seed spectral broadening at low launch powers, and the interplay between MI and stimulated Raman scattering plays an important role in the growth of the continuum at high launch powers. The effect on continuum generation of parametric four-wave mixing coupled with the higher-order dispersion properties of the fiber is investigated.