A snapshot of protein trafficking in SARS‐CoV‐2 infection

SARS‐CoV‐2 is a human pathogenic virus responsible for the COVID‐19 (coronavirus disease 2019) pandemic. The infection cycle of SARS‐CoV‐2 involves several related steps, including virus entry, gene expression, RNA replication, assembly of infectious virions and their egress. For all of these steps, the virus relies on and exploits host cell factors, cellular organelles, and processes such as endocytosis, nuclear transport, protein secretion, metabolite transport at membrane contact sites (MSC) and exocytotic pathways. To do this, SARS‐CoV‐2 has evolved multifunctional viral proteins that hijack cellular factors and modulate their function by unique strategies. In this Review, we highlight cellular trafficking factors, processes, and organelles of relevance to the SARS‐CoV‐2 infection cycle and how viral proteins make use of and perturb cellular transport during the viral infection cycle.

[1]  S. Whelan,et al.  SARS-CoV-2 requires acidic pH to infect cells , 2022, bioRxiv.

[2]  L. Giaquinto,et al.  The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle , 2022, Nature.

[3]  M. Merad,et al.  The immunology and immunopathology of COVID-19 , 2022, Science.

[4]  F. Reggiori,et al.  Molecular regulation of autophagosome formation , 2022, Biochemical Society transactions.

[5]  J. Qi,et al.  SNX27 suppresses SARS-CoV-2 infection by inhibiting viral lysosome/late endosome entry , 2022, Proceedings of the National Academy of Sciences.

[6]  Ran Gao,et al.  SARS-CoV-2 treatment effects induced by ACE2-expressing microparticles are explained by the oxidized cholesterol-increased endosomal pH of alveolar macrophages , 2022, Cellular & molecular immunology.

[7]  Hangtian Guo,et al.  Molecular Mechanism of SARS-CoVs Orf6 Targeting the Rae1–Nup98 Complex to Compete With mRNA Nuclear Export , 2022, Frontiers in Molecular Biosciences.

[8]  S. Srikanth,et al.  ORAI1 Limits SARS-CoV-2 Infection by Regulating Tonic Type I IFN Signaling. , 2021, Journal of immunology.

[9]  R. Bartenschlager,et al.  Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation , 2021, Cell Reports.

[10]  D. Voon,et al.  NSP9 of SARS-CoV-2 attenuates nuclear transport by hampering nucleoporin 62 dynamics and functions in host cells , 2021, Biochemical and Biophysical Research Communications.

[11]  Steven B. Bradfute,et al.  Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes , 2021, Cell.

[12]  Guðjón Ólafsson,et al.  Forced association of SARS-CoV-2 proteins with the yeast proteome perturb vesicle trafficking , 2021, Microbial cell.

[13]  Aijun Wang,et al.  Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID‐19 Therapy , 2021, Advanced materials.

[14]  M. Farzan,et al.  Mechanisms of SARS-CoV-2 entry into cells , 2021, Nature reviews. Molecular cell biology.

[15]  Tao Wang,et al.  A Vimentin-Targeting Oral Compound with Host-Directed Antiviral and Anti-Inflammatory Actions Addresses Multiple Features of COVID-19 and Related Diseases , 2021, bioRxiv.

[16]  P. Bieniasz,et al.  VPS29 Exerts Opposing Effects on Endocytic Viral Entry , 2021, bioRxiv.

[17]  E. Holmes,et al.  The origins of SARS-CoV-2: A critical review , 2021, Cell.

[18]  Kyoko Furuita,et al.  Sequence requirements of the FFAT‐like motif for specific binding to VAP‐A are revealed by NMR , 2021, FEBS letters.

[19]  M. Malim,et al.  TMPRSS2 promotes SARS-CoV-2 evasion from NCOA7-mediated restriction , 2021, bioRxiv.

[20]  P. A. Friedman,et al.  ACE2 interaction with cytoplasmic PDZ protein enhances SARS-CoV-2 invasion , 2021, iScience.

[21]  Guoyu Yang,et al.  NPC1-regulated dynamic of clathrin-coated pits is essential for viral entry , 2021, Science China Life Sciences.

[22]  H. Erfle,et al.  Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation , 2021, Nature Communications.

[23]  Yong Lin,et al.  The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes , 2021, Cell Discovery.

[24]  J. Yue,et al.  Berbamine inhibits SARS-CoV-2 infection by compromising TRPMLs-mediated endolysosomal trafficking of ACE2 , 2021, Signal Transduction and Targeted Therapy.

[25]  M. Gale,et al.  SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98 , 2021, mBio.

[26]  R. Holmdahl,et al.  Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification , 2021, Computational and Structural Biotechnology Journal.

[27]  Xiao Li,et al.  Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice , 2021, Virology journal.

[28]  J. Minna,et al.  Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression , 2021, Science Advances.

[29]  M. Seaman The Retromer Complex: From Genesis to Revelations. , 2021, Trends in biochemical sciences.

[30]  S. Badawi,et al.  ACE2 Nascence, trafficking, and SARS-CoV-2 pathogenesis: the saga continues , 2020, Human Genomics.

[31]  Silva Kasela,et al.  Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells , 2020, Cell.

[32]  G. Whittaker,et al.  Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin , 2021, ACS infectious diseases.

[33]  M. Mann,et al.  Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV , 2020, Nature.

[34]  Y. Bi,et al.  ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation , 2020, Developmental Cell.

[35]  M. Hazawa,et al.  Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex , 2020, Biochemical and Biophysical Research Communications.

[36]  E. Kudryashova,et al.  Opposing activities of IFITM proteins in SARS‐CoV‐2 infection , 2020, The EMBO journal.

[37]  R. Friesner,et al.  Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains , 2020, Cell Host & Microbe.

[38]  R. Bartenschlager,et al.  Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies , 2020, Cell Host & Microbe.

[39]  V. Thiel,et al.  Coronavirus biology and replication: implications for SARS-CoV-2 , 2020, Nature Reviews Microbiology.

[40]  G. Altan-Bonnet,et al.  β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway , 2020, Cell.

[41]  A. Helenius,et al.  Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity , 2020, Science.

[42]  M. Guttman,et al.  SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses , 2020, Cell.

[43]  Zhènglì Shí,et al.  Characteristics of SARS-CoV-2 and COVID-19 , 2020, Nature Reviews Microbiology.

[44]  Vineet D. Menachery,et al.  Evasion of Type I Interferon by SARS-CoV-2 , 2020, Cell Reports.

[45]  Xiaosheng Wang,et al.  Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses , 2020, Frontiers in Immunology.

[46]  K. To,et al.  A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2 , 2020, Nature Communications.

[47]  L. Ren,et al.  Activation and evasion of type I interferon responses by SARS-CoV-2 , 2020, Nature Communications.

[48]  D. A. Stein,et al.  TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells , 2020, Life Science Alliance.

[49]  C. Rice,et al.  LY6E impairs coronavirus fusion and confers immune control of viral disease , 2020, Nature Microbiology.

[50]  M. Farzan,et al.  Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2 , 2020, bioRxiv.

[51]  J. Skehel,et al.  SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects , 2020, Nature Structural & Molecular Biology.

[52]  L. Martin-Jaular,et al.  Extracellular vesicles containing ACE2 efficiently prevent infection by SARS‐CoV‐2 Spike protein‐containing virus , 2020, bioRxiv.

[53]  Wuyuan Lu,et al.  Interferon-Induced Transmembrane Protein 3 Blocks Fusion of Diverse Enveloped Viruses by Locally Altering Mechanical Properties of Cell Membranes , 2020, bioRxiv.

[54]  D. Agard,et al.  A molecular pore spans the double membrane of the coronavirus replication organelle , 2020, Science.

[55]  Tiago J. S. Lopes,et al.  Identification of interferon-stimulated genes that attenuate Ebola virus infection , 2020, Nature Communications.

[56]  D. Fremont,et al.  Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion , 2020, Proceedings of the National Academy of Sciences.

[57]  A. Helenius,et al.  Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system , 2020, bioRxiv.

[58]  D. Matthews,et al.  Neuropilin-1 is a host factor for SARS-CoV-2 infection , 2020, Science.

[59]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[60]  D. A. Stein,et al.  TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets , 2020, bioRxiv.

[61]  K. Yuen,et al.  Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 , 2020, Cell.

[62]  Yan Liu,et al.  Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV , 2020, Nature Communications.

[63]  Abraham J. Koster,et al.  A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis , 2020, bioRxiv.

[64]  Tony Y. Hu,et al.  Insights from nanomedicine into chloroquine efficacy against COVID-19 , 2020, Nature Nanotechnology.

[65]  K. Shi,et al.  Structural basis of receptor recognition by SARS-CoV-2 , 2020, Nature.

[66]  C. Rice,et al.  LY6E impairs coronavirus fusion and confers immune control of viral disease , 2020, Nature Microbiology.

[67]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[68]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[69]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[70]  S. Ludwig,et al.  Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine , 2020, bioRxiv.

[71]  W. Prinz,et al.  The functional universe of membrane contact sites , 2019, Nature Reviews Molecular Cell Biology.

[72]  J. Sluijter,et al.  Interfering with endolysosomal trafficking enhances release of bioactive exosomes. , 2019, Nanomedicine : nanotechnology, biology, and medicine.

[73]  T. Yoshimori,et al.  Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes , 2019, Nature Cell Biology.

[74]  S. Pfeffer,et al.  NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes , 2019, The Journal of Biological Chemistry.

[75]  C. Viret,et al.  Regulation of Syntaxin 17 during Autophagosome Maturation. , 2019, Trends in cell biology.

[76]  Nicholas Rinkenberger,et al.  LY6E mediates an evolutionarily conserved enhancement of virus infection by targeting a late entry step , 2018, Nature Communications.

[77]  Traci L. Marin,et al.  AMP‐activated Protein Kinase Phosphorylation of Angiotensin‐Converting Enzyme 2 in Endothelium Mitigates Pulmonary Hypertension , 2018, American journal of respiratory and critical care medicine.

[78]  S. Cherry,et al.  Flavivirus internalization is regulated by a size-dependent endocytic pathway , 2018, Proceedings of the National Academy of Sciences.

[79]  Huaxi Xu,et al.  The Retromer Complex and Sorting Nexins in Neurodegenerative Diseases , 2018, Front. Aging Neurosci..

[80]  N. Gao,et al.  A novel autophagy inhibitor berbamine blocks SNARE-mediated autophagosome-lysosome fusion through upregulation of BNIP3 , 2018, Cell Death & Disease.

[81]  A. Koster,et al.  Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3-4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication , 2017, mBio.

[82]  O. Schwartz,et al.  IFITM3 requires an amphipathic helix for antiviral activity , 2017, EMBO reports.

[83]  P. D. Nagy,et al.  Building Viral Replication Organelles: Close Encounters of the Membrane Types , 2016, PLoS pathogens.

[84]  T. Levine,et al.  VAP, a Versatile Access Point for the Endoplasmic Reticulum: Review and analysis of FFAT-like motifs in the VAPome. , 2016, Biochimica et biophysica acta.

[85]  T. Rapoport,et al.  Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network , 2016, eLife.

[86]  Yohei Yamauchi,et al.  Principles of Virus Uncoating: Cues and the Snooker Ball , 2016, Traffic.

[87]  F. V. van Kuppeveld,et al.  Fat(al) attraction: Picornaviruses Usurp Lipid Transfer at Membrane Contact Sites to Create Replication Organelles , 2016, Trends in Microbiology.

[88]  G. Voeltz,et al.  Structure and function of ER membrane contact sites with other organelles , 2015, Nature Reviews Molecular Cell Biology.

[89]  Yves Renaudineau,et al.  Calcium signaling and cell fate: how can Ca2+ signals contribute to wrong decisions for Chronic Lymphocytic Leukemic B lymphocyte outcome? , 2015, The International journal of developmental biology.

[90]  Ru-jing Ren,et al.  The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration , 2015, Translational Neurodegeneration.

[91]  Charles M. Rice,et al.  Corrigendum: A diverse range of gene products are effectors of the type I interferon antiviral response , 2015, Nature.

[92]  R. Bartenschlager,et al.  Hepatitis C Virus RNA Replication and Assembly: Living on the Fat of the Land , 2014, Cell Host & Microbe.

[93]  F. Torta,et al.  Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. , 2014, Cell host & microbe.

[94]  R. Teasdale,et al.  A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer , 2014, Proceedings of the National Academy of Sciences.

[95]  Xin Zhang,et al.  Signal recognition particle: an essential protein-targeting machine. , 2013, Annual review of biochemistry.

[96]  Y. Yamauchi,et al.  Virus entry at a glance , 2013, Journal of Cell Science.

[97]  G. Cheng,et al.  Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. , 2013, Immunity.

[98]  E. Gratton,et al.  IFITM Proteins Restrict Viral Membrane Hemifusion , 2013, PLoS pathogens.

[99]  A. Osterhaus,et al.  Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. , 2012, The New England journal of medicine.

[100]  G. Whittaker,et al.  Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein , 2012, Viruses.

[101]  D. Rubinsztein,et al.  Autophagosome Precursor Maturation Requires Homotypic Fusion , 2011, Cell.

[102]  Karl H. Wolf,et al.  Comparative review , 2011, J. Documentation.

[103]  C. Rice,et al.  Suppression of inflammation by a synthetic histone mimic , 2010, Nature.

[104]  D. Rubinsztein,et al.  Plasma membrane helps autophagosomes grow , 2010, Autophagy.

[105]  M. Stewart Nuclear export of mRNA. , 2010, Trends in biochemical sciences.

[106]  G. Charron,et al.  Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. , 2010, Nature chemical biology.

[107]  E. Ruoslahti,et al.  C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration , 2009, Proceedings of the National Academy of Sciences.

[108]  L. Gakhar,et al.  Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. , 2009, American journal of physiology. Lung cellular and molecular physiology.

[109]  S. R. Wente,et al.  mRNA nuclear export at a glance , 2009, Journal of Cell Science.

[110]  Ralph S. Baric,et al.  Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane , 2007, Journal of Virology.

[111]  R. Weinstein Planning for epidemics--the lessons of SARS. , 2004, The New England journal of medicine.

[112]  D. Dimitrov,et al.  Virus entry: molecular mechanisms and biomedical applications , 2004, Nature Reviews Microbiology.

[113]  A. Cassone,et al.  Effects of chloroquine on viral infections: an old drug against today's diseases , 2003, The Lancet Infectious Diseases.

[114]  Kevin Struhl,et al.  TREX is a conserved complex coupling transcription with messenger RNA export , 2002, Nature.

[115]  B. Séraphin,et al.  A U1 snRNA:pre‐mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. , 1988, The EMBO journal.