Molecular characterization of carbapenemase production among gram-negative bacteria in saudi arabia.

We characterized the molecular basis of carbapenemase production in carbapenem-resistant Gram-negative bacteria isolated from hospitalized patients from Saudi Arabia in the year 2012. Isolates were collected from across the Kingdom and phenotypically tested for carbapenemase production. Polymerase chain reaction detection of carbapenemase genes was also performed. Our results indicate that in Saudi Arabia, OXA-48 and NDM-1 are the dominant carbapenemases among Enterobacteriaceae with low prevalence of VIM. The latter is the most prevalent metallo-beta-lactamase in Pseudomonas aeruginosa, whereas oxacillinases, OXA-23 in particular, are the dominant carbapenemases in Acinetobacter baumannii. No KPC or IMP genes were detected. Our study is the first report of OXA-48, NDM-1, and VIM-4 enzymes in Enterobacter from the Kingdom. Also it is the first report of OXA-72 and NDM-1 in A. baumannii in Saudi Arabia, and the coexistence of blaOXA-23 and blaNDM-1 genes in this species in the country. Awareness of the role of international travel in the spread of carbapenem-resistant determinants in the Kingdom, as well as effective infection control interventions in hospitals and strict antimicrobial stewardship in healthcare facilities and the community are keys to combat the rise of carbapenemase producers in the Kingdom.

[1]  Z. Memish,et al.  Prevalence and antimicrobial resistance among Gram-negative pathogens in Saudi Arabia , 2014, Journal of chemotherapy.

[2]  A. Dashti,et al.  Molecular Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae in the Countries of the Gulf Cooperation Council: Dominance of OXA-48 and NDM Producers , 2014, Antimicrobial Agents and Chemotherapy.

[3]  H. Balkhy,et al.  Genetic diversity of OXA-51-like genes among multidrug-resistant Acinetobacter baumannii in Riyadh, Saudi Arabia , 2014, European Journal of Clinical Microbiology & Infectious Diseases.

[4]  S. Molnár,et al.  First description of bla(NDM-1), bla(OXA-48), bla(OXA-181) producing Enterobacteriaceae strains in Romania. , 2013, International journal of medical microbiology : IJMM.

[5]  J. John,et al.  Molecular characterization of the β‐lactamases in Escherichia coli and Klebsiella pneumoniae from a tertiary care hospital in Riyadh, Saudi Arabia , 2013, Microbiology and immunology.

[6]  Z. Memish,et al.  The emergence of OXA-48- and NDM-1-positive Klebsiella pneumoniae in Riyadh, Saudi Arabia. , 2013, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[7]  P. Nordmann,et al.  Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. , 2013, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[8]  D. Paterson,et al.  β-Lactamase Production in Key Gram-Negative Pathogen Isolates from the Arabian Peninsula , 2013, Clinical Microbiology Reviews.

[9]  D. Livermore,et al.  Persistence of Klebsiella pneumoniae clones with OXA-48 or NDM carbapenemases causing bacteraemias in a Riyadh hospital. , 2013, Diagnostic microbiology and infectious disease.

[10]  D. van Duin,et al.  Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients , 2013, Cleveland Clinic Journal of Medicine.

[11]  E. A. Elsayed,et al.  High frequency of carbapenem-resistant Acinetobacter baumannii in patients with diabetes mellitus in Saudi Arabia. , 2013, Journal of medical microbiology.

[12]  T. Pál,et al.  VIM-4 carbapenemase-producing Enterobacter cloacae in the United Arab Emirates. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[13]  G. Daikos,et al.  Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions , 2012, Clinical Microbiology Reviews.

[14]  D. Anderson,et al.  Infection and Drug Resistance , 2022 .

[15]  A. Shibl,et al.  Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. , 2012, Burns : journal of the International Society for Burn Injuries.

[16]  K. Seme,et al.  Dissemination of New Delhi metallo-β-lactamase-1-producing Acinetobacter baumannii in Europe. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[17]  J. Pitout,et al.  The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae. , 2012, The Journal of antimicrobial chemotherapy.

[18]  Z. Memish,et al.  Antimicrobial resistance among Gram-positive pathogens in Saudi Arabia , 2012, Journal of chemotherapy.

[19]  D. Livermore,et al.  Extended-spectrum and metallo-beta-lactamases among ceftazidime-resistant Pseudomonas aeruginosa in Riyadh, Saudi Arabia , 2012, Journal of chemotherapy.

[20]  Z. Memish,et al.  Tuberculosis in Saudi Arabia: prevalence and antimicrobial resistance , 2012, Journal of chemotherapy.

[21]  A. Corso,et al.  Sensitive and Specific Modified Hodge Test for KPC and Metallo-Beta- Lactamase Detection in Pseudomonas aeruginosa by Use of a Novel Indicator Strain, Klebsiella pneumoniae ATCC 700603 , 2011, Journal of Clinical Microbiology.

[22]  Thierry Naas,et al.  Global Spread of Carbapenemase-producing Enterobacteriaceae , 2011, Emerging infectious diseases.

[23]  Y. Arakawa,et al.  SMB-1, a Novel Subclass B3 Metallo-β-Lactamase, Associated with ISCR1 and a Class 1 Integron, from a Carbapenem-Resistant Serratia marcescens Clinical Isolate , 2011, Antimicrobial Agents and Chemotherapy.

[24]  Yufei Wang,et al.  Coexistence of blaNDM-1 with the prevalent blaOXA23 and blaIMP in pan-drug resistant Acinetobacter baumannii isolates in China. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[25]  Ronald N. Jones,et al.  Early Dissemination of NDM-1- and OXA-181-Producing Enterobacteriaceae in Indian Hospitals: Report from the SENTRY Antimicrobial Surveillance Program, 2006-2007 , 2010, Antimicrobial Agents and Chemotherapy.

[26]  P. Nordmann,et al.  How To Detect NDM-1 Producers , 2010, Journal of Clinical Microbiology.

[27]  Nada S. Al-Qadheeb,et al.  Evolution of tigecycline resistance in Klebsiella pneumoniae in a single patient , 2010, Annals of Saudi medicine.

[28]  S. Pournaras,et al.  Inhibitor-based methods for the detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice by using boronic acid compounds. , 2010, The Journal of antimicrobial chemotherapy.

[29]  T. Qu,et al.  Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. , 2010, International journal of antimicrobial agents.

[30]  N. Gordon,et al.  Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. , 2010, International journal of antimicrobial agents.

[31]  P. Higgins,et al.  Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. , 2010, International journal of antimicrobial agents.

[32]  Qiwen Yang,et al.  Phenotypic and Genotypic Characterization of Enterobacteriaceae with Decreased Susceptibility to Carbapenems: Results from Large Hospital-Based Surveillance Studies in China , 2009, Antimicrobial Agents and Chemotherapy.

[33]  B. Evans,et al.  Acinetobacter baumannii: Emergence of Four Strains with Novel bla OXA-51-like Genes in Patients with Diabetes Mellitus , 2009, Journal of chemotherapy.

[34]  P. Nordmann,et al.  Diversity of plasmid-mediated carbapenem-hydrolysing oxacillinases among carbapenem-resistant Acinetobacter baumannii isolates from Kingdom of Bahrain. , 2009, The Journal of antimicrobial chemotherapy.

[35]  A. Oliver,et al.  Characterization of the New Metallo-β-Lactamase VIM-13 and Its Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in Spain , 2008, Antimicrobial Agents and Chemotherapy.

[36]  Yehuda Carmeli,et al.  Clinical and Economic Impact of Common Multidrug-Resistant Gram-Negative Bacilli , 2007, Antimicrobial Agents and Chemotherapy.

[37]  A. Oliver,et al.  Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa Isolates from Spanish Hospitals , 2007, Antimicrobial Agents and Chemotherapy.

[38]  M. Maniati,et al.  A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel blaVIM-4/blaP1b integron overexpresses two efflux pumps and lacks OprD. , 2007, The Journal of antimicrobial chemotherapy.

[39]  Neil Woodford,et al.  The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter , 2006 .

[40]  N. Woodford,et al.  Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. , 2006, International journal of antimicrobial agents.

[41]  G. Rossolini,et al.  Novel Acquired Metallo-β-Lactamase Gene, blaSIM-1, in a Class 1 Integron from Acinetobacter baumannii Clinical Isolates from Korea , 2005, Antimicrobial Agents and Chemotherapy.

[42]  A. Viale,et al.  Sensitive EDTA-Based Microbiological Assays for Detection of Metallo-β-Lactamases in Nonfermentative Gram-Negative Bacteria , 2005, Journal of Clinical Microbiology.

[43]  D. Church,et al.  Detection of Pseudomonas aeruginosa Producing Metallo-β-Lactamases in a Large Centralized Laboratory , 2005, Journal of Clinical Microbiology.

[44]  P. Nordmann,et al.  Carbapenemase-producing Enterobacteriaceae, U.S. Rivers , 2005, Emerging infectious diseases.

[45]  Ronald N. Jones,et al.  Molecular Characterization of a β-Lactamase Gene, blaGIM-1, Encoding a New Subclass of Metallo-β-Lactamase , 2004, Antimicrobial Agents and Chemotherapy.

[46]  C. Bearzi,et al.  Endemic Carbapenem-resistant Pseudomonas aeruginosa with Acquired Metallo-β-lactamase Determinants in European Hospital , 2004, Emerging infectious diseases.

[47]  C. Vay,et al.  First Class A Carbapenemase Isolated from Enterobacteriaceae in Argentina , 2004, Antimicrobial Agents and Chemotherapy.

[48]  P. Nordmann,et al.  Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae , 2004, Antimicrobial Agents and Chemotherapy.

[49]  Y. Chong,et al.  VIM- and IMP-Type Metallo-β-lactamase–Producing Pseudomonas spp. and Acinetobacter spp. in Korean Hospitals , 2003, Emerging infectious diseases.

[50]  K. Bush,et al.  Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae , 2001, Antimicrobial Agents and Chemotherapy.

[51]  J. Quinn,et al.  SME-Type Carbapenem-Hydrolyzing Class A β-Lactamases from Geographically Diverse Serratia marcescens Strains , 2000, Antimicrobial Agents and Chemotherapy.

[52]  D. Paterson,et al.  Carbapenemase-Producing Enterobacteriaceae , 2015, Seminars in Respiratory and Critical Care Medicine.

[53]  B. Abdalhamid,et al.  Characterization of carbapenem-resistant Acinetobacter baumannii clinical isolates in a tertiary care hospital in Saudi Arabia. , 2014, The new microbiologica.

[54]  S. Gatermann,et al.  Description of the metallo-β-lactamase GIM-1 in Acinetobacter pittii. , 2014, The Journal of antimicrobial chemotherapy.

[55]  C. Nicolau,et al.  Carbapenemasas en especies del género Pseudomonas , 2010 .