Basal Nano-Suit of Graphite for High Energy Hybrid Li Batteries.

Lithium (Li) metal anode has attracted tremendous attention for its highest capacity (3860 mAh g-1). Herein, we report that the formation of dead Li can be effectively suppressed through Li plating on a porous lithiated graphite lamina (PLGL). A lithiophilic carbon layer was ornamented on the lithiophobic basal plane of porous graphite lamina (PGL) by an industry scalable slurry-coating strategy. Moreover, the higher delithiation potential of PLGL will ensure the complete stripping of the plated Li before its delithiation, thus dramatically enhancing the average Coulombic efficiency (ACE) of Li plating/stripping to 98.5% at a high Li plating/stripping capacity of 2 mAh cm-2 (~1100 mAh g-1) at 2 mA cm-2. Even at an ultrahigh current density of 4 mA cm-2 (with Li capacity of 4 mAh cm-2 (~1900 mAh g-1)), the ACE could still be maintained to be 96.2% in ordinary carbonate electrolyte.

[1]  Yulong Sun,et al.  Facile Generation of Polymer-Alloy Hybrid Layer towards Dendrite-free Lithium Metal Anode with Improved Moisture Stability. , 2019, Angewandte Chemie.

[2]  Bing Sun,et al.  Temperature-dependent Nucleation and Growth of Dendrite-free Lithium Metal Anodes. , 2019, Angewandte Chemie.

[3]  X. Qin,et al.  In-Plane Highly Dispersed Cu2O Nanoparticles for Seeded Lithium Deposition. , 2019, Nano letters.

[4]  M. Armand,et al.  Stable Conversion Chemistry-Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near-Single Ion Conduction. , 2019, Angewandte Chemie.

[5]  Chunsheng Wang,et al.  High-Energy Li Metal Battery with Lithiated Host , 2019, Joule.

[6]  Baohua Li,et al.  High-Performance Quasi-Solid-State MXene-Based Li–I Batteries , 2019, ACS central science.

[7]  Ya‐Xia Yin,et al.  Guiding Uniform Li Plating/Stripping through Lithium-Aluminum Alloying Medium for Long-Life Li Metal Batteries. , 2019, Angewandte Chemie.

[8]  Adelaide M. Nolan,et al.  Lithium–Graphite Paste: An Interface Compatible Anode for Solid‐State Batteries , 2019, Advanced materials.

[9]  Rui Zhang,et al.  Lithiophilic LiC6 Layers on Carbon Hosts Enabling Stable Li Metal Anode in Working Batteries , 2019, Advanced materials.

[10]  Kun Fu,et al.  An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries , 2018, Advanced materials.

[11]  J. Tu,et al.  Large-scale synthesis of high-quality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries , 2018, Energy Storage Materials.

[12]  X. Qin,et al.  Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode , 2018, Energy Storage Materials.

[13]  Hyun-Wook Lee,et al.  Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery , 2018, Advanced materials.

[14]  S. Choudhury,et al.  Fast ion transport at solid–solid interfaces in hybrid battery anodes , 2018 .

[15]  Bing Sun,et al.  Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes , 2018 .

[16]  Jiayan Luo,et al.  Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes , 2017 .

[17]  Ya‐Xia Yin,et al.  Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels , 2017, Advanced materials.

[18]  J. Tour,et al.  Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries. , 2017, ACS nano.

[19]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[20]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[21]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[22]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[23]  Yi Cui,et al.  Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries , 2016 .

[24]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[25]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[26]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[27]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[28]  Yang Liu,et al.  Influence of α-Al2O3 (0 0 0 1) surface reconstruction on wettability of Al/Al2O3 interface: A first-principle study , 2014 .

[29]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[30]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[31]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[32]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .