Using Parametric Bootstrap to Introduce and Manage Uncertainty: Replicated Loaded Insurance Life Tables

Insurance companies develop loaded life tables to protect themselves against deviations, for example, in the number of expected deaths or in the (residual) expectation of life of their insured. In doing so, however, the single random vector of experience crude death rates from which loaded tables are constructed is treated as deterministic or, at best, as a single realization of an underlying stochastic process, omitting the fact that it is estimated and subject to error and uncertainty. This can result in serious consequences for the insurer. To solve this problem, we follow the example of other researchers and propose a method to replicate loaded life tables using parametric bootstrap. We focus on estimating period-loaded life tables from company portfolios, where the sizes of the exposed-to-risk populations are significantly smaller than those of general populations. If we have a set of B loaded life tables, the average behavior and some extreme values can be computed and subsequently used in managing premiums or reserves. This article offers life insurers a simple way of incorporating the experience uncertainty in actuarial tasks (for example, in pricing) by comparing the limits of the confidence intervals obtained between parametric bootstrap and classical approaches (such as limit theorems).

[1]  Steven Haberman NON-PARAMETRIC GRADUATION USING KERNEL METHODS , 1983 .

[2]  Steven Haberman,et al.  On age-period-cohort parametric mortality rate projections , 2009 .

[3]  Ana Debón,et al.  A comparison of parametric models for mortality graduation. Application to mortality data of the Valencia Region (Spain) , 2005 .

[4]  Paul K. J. Han,et al.  Varieties of Uncertainty in Health Care , 2011 .

[5]  Michael R Chernick,et al.  Bootstrap Methods: A Guide for Practitioners and Researchers , 2007 .

[6]  On the Duality of Assumptions Underpinning the Construction of Life Tables , 1997, ASTIN Bulletin.

[7]  Michel Denuit,et al.  A multivariate time series approach to projected life tables , 2009 .

[8]  A Bayesian non-parametric model for small population mortality , 2018 .

[9]  Moving weighted average graduation using kernel estimation , 1993 .

[10]  H. Ramlau-Hansen Smoothing Counting Process Intensities by Means of Kernel Functions , 1983 .

[11]  Paul K J Han,et al.  Varieties of uncertainty in health care: a conceptual taxonomy. , 2011, Medical decision making : an international journal of the Society for Medical Decision Making.

[12]  Michel Denuit,et al.  Measuring the longevity risk in mortality projections , 2002 .

[13]  J. Beer Dealing with uncertainty in population forecasting , 2004 .

[14]  Steven Haberman,et al.  The Modelling of Recent Mortality Trends in United Kingdom Male Assured Lives , 1996, British Actuarial Journal.

[15]  Michel Denuit,et al.  Negative binomial version of the Lee–Carter model for mortality forecasting , 2007 .

[16]  R. Sala,et al.  A comparison of models for dynamic life tables. Application to mortality data from the Valencia Region (Spain) , 2006, Lifetime data analysis.

[17]  Steven Haberman,et al.  Projecting Mortality Trends , 2004 .

[18]  Arnold F. Shapiro,et al.  Evaluating and extending the Lee–Carter model for mortality forecasting: Bootstrap confidence interval , 2006 .

[19]  Andrés M. Villegas,et al.  On the modelling and forecasting of socio-economic mortality differentials: an application to deprivation and mortality in England , 2013 .

[20]  Dimitris Karlis,et al.  Bootstrap Techniques for Mortality Models , 2002 .

[21]  Michael Sherris,et al.  Heterogeneity of Australian Population Mortality and Implications for a Viable Life Annuity Market , 2011 .

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  Risque de longévité et rentes viagères - 2. Tables de mortalité prospectives pour la population belge , 2002 .

[24]  P. Saavedra-Santana,et al.  Estimation of the population spectrum with replicated time series , 1999 .

[25]  Han L. J. van der Maas,et al.  Fitting diffusion item response theory models for responses and response times using the R package diffIRT , 2015 .

[26]  J. H. Pollard,et al.  The age pattern of mortality , 1979 .

[27]  W. F. Scott,et al.  An extension of the Whittaker–Henderson method of graduation , 2012 .

[28]  Ingrid Van Keilegom,et al.  Bootstrapping the Poisson log-bilinear model for mortality forecasting , 2005 .

[29]  Eduardo Calixto,et al.  Lifetime Data Analysis , 2016 .

[30]  R. E. Hayward The Analysis of Mortality and other Actuarial Statistics. By B. Benjamin and J. H. Pollard. [Heinemann, 1980] , 1980 .

[31]  J. Pavía Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel , 2015 .

[32]  G. Rempała,et al.  Bootstrapping Parametric Models of Mortality , 2004 .

[33]  M. Sherris,et al.  Modelling Mortality with Common Stochastic Long-Run Trends , 2011 .

[34]  J. Pavía,et al.  Assessing implicit hypotheses in life table construction , 2017 .

[35]  A. Debón,et al.  Modelling and forecasting mortality in Spain , 2008, Eur. J. Oper. Res..

[36]  Steven Haberman,et al.  An investigation into parametric models for mortality projections, with applications to immediate annuitants' and life office pensioners' data , 2000 .

[37]  S. Haberman,et al.  On the choice of bandwidth for kernel graduation , 1994 .

[38]  A. D. Wilkie,et al.  On graduation by mathematical formula , 1988 .

[39]  Michel Denuit,et al.  A Poisson log-bilinear regression approach to the construction of projected lifetables , 2002 .

[40]  C. Redmond,et al.  Maximum‐Likelihood Estimation of the Parameters of the Gompertz Survival Function , 1970 .

[41]  Modelling Dependent Data For Longevity Projections , 2012 .

[42]  Helen M. Regan,et al.  A TAXONOMY AND TREATMENT OF UNCERTAINTY FOR ECOLOGY AND CONSERVATION BIOLOGY , 2002 .

[43]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[44]  Ronald Lee,et al.  Modeling and forecasting U. S. mortality , 1992 .