Seismogenic zone structure of the southern Middle America Trench, Costa Rica

[1] The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ∼300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region. These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity. This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level.

[1]  M. Heflin,et al.  Seismic cycle and plate margin deformation in Costa Rica: GPS observations from 1994 to 1997 , 1999 .

[2]  P. Stoffa,et al.  Three‐dimensional seismic imaging of the Costa Rica accretionary prism: Structural diversity in a small volume of the lower slope , 1992 .

[3]  R. Crosson,et al.  Crustal structure modeling of earthquake data: 1. Simultaneous least squares estimation of hypocenter and velocity parameters , 1976 .

[4]  N. Pinter,et al.  Quaternary uplift astride the aseismic Cocos Ridge, Pacific coast, Costa Rica , 1992 .

[5]  Edi Kissling,et al.  Geotomography with local earthquake data , 1988 .

[6]  C. Ranero,et al.  Tectonic structure of the convergent Pacific margin offshore Costa Rica from multichannel seismic reflection data , 1996 .

[7]  T. Karlsson,et al.  A statistical study of intense low‐altitude electric fields observed by Freja , 1996 .

[8]  G. Latham,et al.  Crustal structure in Southern Central America , 1977, Bulletin of the Seismological Society of America.

[9]  S. Cande,et al.  Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models , 2001 .

[10]  G. D. Nelson,et al.  Earthquake locations by 3-D finite-difference travel times , 1990, Bulletin of the Seismological Society of America.

[11]  Karen Sparck Jones,et al.  Heat Flow on the Incoming Plate Offshore Nicoya, Costa Rica margin: Implications for Hydrothermal Circulation and the Thermal State of the Subducting Plate , 2001 .

[12]  J. Pacheco,et al.  The March 25, 1990 (Mw = 7.0, ML = 6.8), earthquake at the entrance of the Nicoya Gulf, Costa Rica: Its prior activity, foreshocks, aftershocks, and triggered seismicity , 1995 .

[13]  T. Kanazawa,et al.  Spatial distribution of earthquakes off Sanriku, northeastern Japan, in 1989 determined by ocean-bottom and land-based observation , 1990 .

[14]  J. Bialas,et al.  Morphotectonics of the Pacific convergent margin of Costa Rica , 1995 .

[15]  M. Kikuchi,et al.  Tectonic implications of the seismic ruptures associated with the 1983 and 1991 Costa Rica earthquakes , 1995 .

[16]  V. González,et al.  Along‐strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica , 2002 .

[17]  M. Meschede,et al.  Extinct spreading on the Cocos Ridge , 1998 .

[18]  E. Kissling,et al.  Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network , 1999 .

[19]  G. Christeson,et al.  Structure of the Costa Rica convergent margin, offshore Nicoya Peninsula , 1999 .

[20]  P. Vrolijk On the mechanical role of smectite in subduction zones , 1990 .

[21]  Urs Kradolfer,et al.  Program VELEST USER'S GUIDE - Short Introduction , 1995 .

[22]  R. Hey Tectonic evolution of the Cocos-Nazca spreading center , 1977 .

[23]  Joan S. Gomberg,et al.  The effect of S-wave arrival times on the accuracy of hypocenter estimation , 1990, Bulletin of the Seismological Society of America.

[24]  E. Flueh,et al.  Lithospheric structure of the Costa Rican Isthmus: Effects of subduction zone magmatism on an oceanic plateau , 2001 .

[25]  Susan Y. Schwartz,et al.  Depth distribution of moment release in underthrusting earthquakes at subduction zones , 1992 .

[26]  Larry J. Ruff,et al.  Depth of seismic coupling along subduction zones , 1993 .

[27]  Clifford H. Thurber,et al.  Hypocenter-velocity structure coupling in local earthquake tomography , 1992 .

[28]  L. Sykes,et al.  Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones , 1988 .

[29]  R. Quintero,et al.  Stress Field in Costa Rica, Central America , 2000 .

[30]  E. Flueh,et al.  Seismic velocity structure across the middleAmerican landbridge in northern Costa Rica , 1999 .

[31]  J. Bialas,et al.  Crustal structure of the Middle American Trench off Costa Rica from wide‐angle seismic data , 1996 .

[32]  Toshinori Sato,et al.  Hypocenter distribution of plate boundary zone off Fukushima, Japan, derived from ocean bottom seismometer data , 2004 .

[33]  W. Weinrebe,et al.  Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism , 2000 .

[34]  M. Yamano,et al.  The seismogenic zone of subduction thrust faults , 1997 .

[35]  P. Mattson Geologic and tectonic development of the Caribbean plate boundary in Southern Central America , 1997 .

[36]  D. Saffer,et al.  Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress , 2001 .

[37]  J. Marshall,et al.  Central Costa Rica deformed belt: Kinematics of diffuse faulting across the western Panama block , 2000 .

[38]  M. Protti,et al.  Correlation between the age of the subducting Cocos plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica , 1995 .

[39]  L. Ruff,et al.  Seismic coupling along the Chilean Subduction Zone , 1991 .

[40]  Stuart P. Nishenko,et al.  Circum-Pacific seismic potential: 1989–1999 , 1991 .

[41]  C. Findlay,et al.  Subduction erosion along the Middle America convergent margin , 2000, Nature.

[42]  F. Waldhauser,et al.  A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California , 2000 .

[43]  Kelin Wang,et al.  The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Casca , 1999 .

[44]  J. Marshall,et al.  Effect of subducting sea-floor roughness on fore-arc kinematics , 1998 .

[45]  S. Schwartz,et al.  Control of seafloor roughness on earthquake rupture behavior , 2003 .

[46]  D. Wiens,et al.  Seismic rupture associated with subduction of the Cocos Ridge , 1987 .

[47]  Javier F. Pacheco,et al.  Seismic moment catalog of large shallow earthquakes, 1900 to 1989 , 1992, Bulletin of the Seismological Society of America.

[48]  Susan Y. Schwartz,et al.  Simultaneous inversion for earthquake location and velocity structure beneath central Costa Rica , 1996 .

[49]  John A. Hole,et al.  3-D finite-difference reflection travel times , 1995 .

[50]  T. Dixon GPS Measurement of Relative Motion of the Cocos and Caribbean Plates and Strain Accumulation Across the Middle America Trench , 1993 .

[51]  S. Husen,et al.  Tomographic evidence for a subducted seamount beneath the Gulf of Nicoya, Costa Rica: The cause of the 1990 Mw = 7.0 Gulf of Nicoya earthquake , 2002 .

[52]  M. Protti,et al.  The geometry of the Wadati-Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network , 1994 .

[53]  Javier F. Pacheco,et al.  Nature of seismic coupling along simple plate boundaries of the subduction type , 1993 .

[54]  Large aperture seismic imaging at a convergent margin: Techniques and results from the Costa Rica seismogenic zone , 2000 .

[55]  C. Demets A new estimate for present‐day Cocos‐Caribbean Plate motion: Implications for slip along the Central American Volcanic Arc , 2001 .

[56]  J. Vidale Finite‐difference calculation of traveltimes in three dimensions , 1990 .

[57]  T. Kanazawa,et al.  Interplate seismic activity near the northern Japan Trench deduced from ocean bottom and land-based seismic observations , 1996 .

[58]  C. Walther The crustal structure of the Cocos ridge off Costa Rica , 2003 .

[59]  M. Langseth,et al.  The Nicoya Convergent Margin—A region of exceptionally low heat flow , 1996 .