Trans-cis photoisomerization in nanostructured floating layers and x-ray diffraction study of Langmuir-Schaefer films of nonyloxypheylazocinnamic acid

ABSTRACT Azo-functionalised materials are of special interest due to their photochromic nature, i.e. reversible trans–cis isomerisation upon photoirradiation. The structure and properties of Langmuir monolayers of nonyloxyphenylazocinnamic acid (NOPACA) with and without exposure to UV-irradiation were studied. The NOPACA floating layer structure was determined by using a quantitative method of compression isotherm analysis. The results showed that the structure of two dimensional face-on M-nanoaggregates, the stable structural elements of floating monolayers, changes when exposed to UV-irradiation. Langmuir-Schaefer films of NOPACA were prepared by deposition of floating layers and studied using X-ray diffraction technique.

[1]  Joydip De,et al.  Applications of liquid crystals in biosensing and organic light-emitting devices: future aspects , 2016 .

[2]  C. Tschierske,et al.  Non-symmetric ether-linked liquid crystalline dimers with a highly polar end group , 2016 .

[3]  A. Al-Lami Preparation and Mesomorphic Characterization of Supramolecular Hydrogen-Bonded Dimer Liquid Crystals , 2016 .

[4]  N. Prabu,et al.  Investigations on Hydrogen-Bonded Liquid Crystals Formed by P-N Alkyl Benzoic Acids and Dodecane Dicarboxylic Acids , 2016 .

[5]  F. Kuschel,et al.  Structural Aspects and Host Effects of the Chirality Transfer by Mesogenic Substituted Aminoalcohols , 2016 .

[6]  O. Koifman,et al.  2D M-nanoaggregates in langmuir layers of calamite mesogen , 2015, Protection of Metals and Physical Chemistry of Surfaces.

[7]  T. Ageeva,et al.  Formation of two-dimensional (M) and three-dimensional (V) nanoaggregates of substituted cobalt porphyrin in the Langmuir layers and Langmuir-Schaefer films , 2013, Russian Chemical Bulletin.

[8]  N. Abbott,et al.  Liquid Crystalline Materials for Biological Applications. , 2012, Chemistry of materials : a publication of the American Chemical Society.

[9]  R. Bushby,et al.  Liquid crystals that affected the world: discotic liquid crystals , 2011 .

[10]  V. Erokhin,et al.  The influence of molecular structure and π-system extent on nano- and microstructure of Langmuir layers of copper azaporphyrins , 2011 .

[11]  N. Abbott,et al.  Recent advances in colloidal and interfacial phenomena involving liquid crystals. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[12]  P. Kannan,et al.  Photo-switching and nonlinear optical behaviors of center linked bent-core azobenzene liquid crystalline polymers , 2011, Journal of Materials Science.

[13]  V. Erokhin,et al.  Nanoaggregates in floating layers of azaporphyrins , 2010 .

[14]  F. Rustichelli,et al.  Nanoaggregates of copper porphyrazine in floating layers and Langmuir-Schaefer films. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[15]  A. S. Glibin,et al.  Quantitative analysis of compression isotherms of fullerene C60 Langmuir layers , 2008 .

[16]  Gregory P. Crawford,et al.  Liquid-crystal materials find a new order in biomedical applications. , 2007, Nature materials.

[17]  Wojciech Pisula,et al.  Discotic liquid crystals: a new generation of organic semiconductors. , 2007, Chemical Society reviews.

[18]  S. Laschat,et al.  Discotic liquid crystals: from tailor-made synthesis to plastic electronics. , 2007, Angewandte Chemie.

[19]  T. Berzina,et al.  Sorption of amines by the Langmuir-Blodgett films of soluble cobalt phthalocyanines: evidence for the supramolecular mechanisms. , 2004, Biosensors & bioelectronics.

[20]  L. Valkova,et al.  Neural Network Approach to Study of Langmuir Layers at the Water Surface , 2004 .

[21]  F. Ciuchi,et al.  Small-angle X-ray scattering and neutron reflectivity studies of Langmuir-Blodgett films of copper tetra-tert-butyl-azaporphyrines , 2003 .

[22]  M. Glodde,et al.  Hierarchical self-assembly, coassembly, and self-organization of novel liquid crystalline lattices and superlattices from a twin-tapered dendritic benzamide and its four-cylinder-bundle supramolecular polymer. , 2003, Chemistry.

[23]  F. Rustichelli,et al.  Some features of the molecular assembly of copper porphyrazines , 2002 .

[24]  J. Goodby Twist grain boundary and frustrated liquid crystal phases , 2002 .

[25]  T. Seki,et al.  Nanostructure of a Photochromic Polymer/Liquid Crystal Hybrid Monolayer on a Water Surface Observed by in Situ X-ray Reflectometry , 2002 .

[26]  C. Tschierske Liquid crystalline materials with complex mesophase morphologies , 2002 .

[27]  H. Bock,et al.  Fluorescent columnar liquid crystalline 3,4,9,10-tetra-(n-alkoxycarbonyl)-perylenes , 2000 .

[28]  F. Rustichelli,et al.  Supramolecular Assembly Formation in Monolayers of tert-Butyl Substituted Copper Phthalocyanine and Tetrabenzotriazaporphin , 1999 .

[29]  R. Auzély-Velty,et al.  Liquid crystals with restricted molecular topologies: supermolecules and supramolecular assemblies , 1998 .

[30]  O. Akopova,et al.  Polysubstituted triphenylenes with active groups. Molecular parameters, synthesis, structure, and mesomorphism , 1998 .

[31]  Samuel I. Stupp,et al.  Functionalized supramolecular materials , 1998 .

[32]  L. Feigin,et al.  Monolayer Study of Monensin and Lasalocid in the Gas State , 1996 .

[33]  Takashi Kato Supramolecular liquid-crystalline materials: molecular self-assembly and self-organization through intermolecular hydrogen bonding , 1996 .

[34]  D. Tsiourvas,et al.  THERMOTROPIC LIQUID CRYSTALS FORMED BY INTERMOLECULAR HYDROGEN BONDING INTERACTIONS , 1995 .

[35]  David S. Lawrence,et al.  Self-Assembling Supramolecular Complexes , 1995 .

[36]  J. Fréchet,et al.  Hydrogen bonding and the self‐assembly of supramolecular liquid‐crystalline materials , 1995 .

[37]  Yukihiro Ozaki,et al.  Molecular Aggregation and Photoisomerization of Langmuir-Blodgett Films of Azobenzene-Containing Long-Chain Fatty Acids and Their Salts Studied by Ultraviolet-Visible and Infrared Spectroscopies , 1994 .

[38]  W. L. Jorgensen Supramolecular chemistry. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Ulman,et al.  Ultrathin organic films: From Langmuir-Blodgett to self assembly , 1991 .

[40]  C. Mcardle,et al.  Side Chain Liquid Crystal Polymers , 1990 .

[41]  Jianwei Xu,et al.  Supramolecular (Hydrogen-Bonded and Halogen-Bonded) Liquid Crystalline Polymers , 2016 .

[42]  O. Koifman,et al.  Formation and Study of Nanostructured M-Monolayers and LS-Films of Triphenylcorrole , 2016 .

[43]  M. V. Petrova,et al.  NANOSTRUCTURE OF ZINC(II) TETRAPHENYLPORPHYRINATE LANGMUIR M-MONOLAYERS FORMED WITH DILUTED SOLUTION , 2014 .

[44]  H. Illias,et al.  Molecular Crystals and Liquid Crystals , 2011 .

[45]  O. Koifman,et al.  Influence of the Solvent Nature on the Structure of Two-dimensional Nanoaggregates in Langmuir Layers of Copper Tetra-tert-butyltetrabenzotriazaporphyrin , 2011 .

[46]  J. Kagan,et al.  POLYCYCLIC AROMATIC COMPOUNDS , 2004 .

[47]  C. Tschierske Non-conventional liquid crystals—the importance of micro-segregation for self-organisation , 1998 .

[48]  H. Ringsdorf,et al.  Photoreactions in Langmuir-Blodgett-Kuhn multilayer assemblies of liquid crystalline azo-dy side-chain polymers , 1992 .

[49]  H. Haken,et al.  Organic Molecular Aggregates , 1983 .