Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries

Thin Sn-Ni alloy films containing various Sn/Ni ratios were prepared by electrodeposition and characterized as lithium-ion secondary battery anodes. The initial drop in discharge capacity varied with the Sn content of thesample; i.e., for samples with 54 atom % Sn and 62 atom % Sn, the drop was less than 100 mAh/g, whereas for those with 84 atom % Sn and 92 atom % Sn, the drop exceeded 500 mAh/g. Among these thin films, the 62 atom % Sn film showed the highest reversible capacity of ca. 650 mAh/g at about the 70th cycle, whereas the other samples (54 atom % Sn, 84 atom % Sn. 92 atom %. Sn) showed a capacity of 300 mAh/g.

[1]  T. Osaka,et al.  Particle size and performance of SnS2 anodes for rechargeable lithium batteries , 2003 .

[2]  F. E. Little,et al.  Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by co , 2002 .

[3]  Noriyuki Tamura,et al.  Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes , 2002 .

[4]  S. Dou,et al.  Lithium Storage Properties of Ball Milled Ni-57 mass%Sn Alloy , 2002 .

[5]  Toshiyuki Momma,et al.  SnS2 anode for rechargeable lithium battery , 2001 .

[6]  Thierry Brousse,et al.  New anode systems for lithium ion cells , 2001 .

[7]  T. Brousse,et al.  Search for suitable matrix for the use of tin-based anodes in lithium ion batteries , 2000 .

[8]  J. Dahn,et al.  Study of the Reaction of Lithium with Isostructural A 2 B and Various Al x B Alloys , 2000 .

[9]  J. Dahn,et al.  In Situ X‐Ray Study of the Electrochemical Reaction of Li with η ′ ‐ Cu6Sn5 , 2000 .

[10]  D. H. Bradhurst,et al.  Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling , 2000 .

[11]  G. M. Ehrlich,et al.  Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries , 2000 .

[12]  J. Dahn,et al.  Nanocomposites in the Sn–Mn–C system produced by mechanical alloying , 2000 .

[13]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[14]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[15]  J. Morales,et al.  Improving the Electrochemical Performance of SnO2 Cathodes in Lithium Secondary Batteries by Doping with Mo , 1999 .

[16]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[17]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: III. Sn2Fe : SnFe3 C Active/Inactive Composites , 1999 .

[18]  Tohru Watanabe,et al.  Metastable Phases Formed in Ni-Sn Electroplated Alloy Film , 1999 .

[19]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[20]  J. Dahn,et al.  Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass , 1997 .

[21]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[22]  M. Izaki,et al.  Structure and fracture of Ni-Sn alloy electroplates from pyrophosphate bath. , 1985 .