Planar random-cluster model: fractal properties of the critical phase
暂无分享,去创建一个
Ioan Manolescu | Vincent Tassion | Hugo Duminil-Copin | H. Duminil-Copin | V. Tassion | I. Manolescu
[1] C. Newman,et al. Critical percolation exploration path and SLE6: a proof of convergence , 2006, math/0604487.
[2] Oded Schramm,et al. Basic properties of SLE , 2001 .
[3] Wendelin Werner,et al. Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .
[4] L. Russo. A note on percolation , 1978 .
[5] H. Duminil-Copin,et al. Convergence of Ising interfaces to Schramm's SLE curves , 2013, 1312.0533.
[6] Planar random-cluster model: scaling relations , 2020, 2011.15090.
[7] C. Newman,et al. Exponential Decay for the Near‐Critical Scaling Limit of the Planar Ising Model , 2017, Communications on Pure and Applied Mathematics.
[8] C. Newman,et al. Two-Dimensional Critical Percolation: The Full Scaling Limit , 2006, math/0605035.
[9] S. Smirnov,et al. Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE , 2016, 1609.08527.
[10] O. Schramm,et al. The scaling limits of near-critical and dynamical percolation , 2013, 1305.5526.
[11] V. Sidoravicius,et al. Almost All Words Are Seen In Critical Site Percolation On The Triangular Lattice , 1998 .
[12] Exploration trees and conformal loop ensembles , 2006, math/0609167.
[13] Geoffrey Grimmett. The Random-Cluster Model , 2002, math/0205237.
[14] H. Duminil-Copin,et al. A new computation of the critical point for the planar random-cluster model with $q\ge1$ , 2016, 1604.03702.
[15] W. Werner,et al. Conformal loop ensembles: the Markovian characterization and the loop-soup construction , 2010, 1006.2374.
[16] Almut Burchard,et al. Holder Regularity and Dimension Bounds for Random Curves , 1998 .
[17] O. Schramm,et al. Quantitative noise sensitivity and exceptional times for percolation , 2005, math/0504586.
[18] Y. Ikhlef,et al. Finite-Size Left-Passage Probability in Percolation , 2012, 1202.5476.
[19] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .
[20] G. Ray,et al. A short proof of the discontinuity of phase transition in the planar random-cluster model with $q>4$ , 2019, 1904.10557.
[21] R. Baxter. Exactly solved models in statistical mechanics , 1982 .
[22] Wendelin Werner,et al. CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .
[23] S. Smirnov. The connective constant of the honeycomb lattice equals 2+2 , 2012 .
[24] O. Schramm,et al. On the Scaling Limits of Planar Percolation , 2011 .
[25] Vladas Sidoravicius,et al. Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with $${1 \le q \le 4}$$1≤q≤4 , 2015, 1505.04159.
[26] M. Biskup,et al. Gibbs states of graphical representations of the Potts model with external fields , 2000 .
[27] H. Duminil-Copin,et al. Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with 1≤q≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} , 2016, Communications in Mathematical Physics.
[28] H. Duminil-Copin,et al. Planar percolation with a glimpse of Schramm–Loewner evolution , 2011, 1107.0158.
[29] H. Duminil-Copin,et al. Macroscopic loops in the loop $O(n)$ model at Nienhuis' critical point , 2017, Journal of the European Mathematical Society.
[30] Vincent Tassion,et al. Sharp phase transition for the random-cluster and Potts models via decision trees , 2017, Annals of Mathematics.
[31] R. de Crespigny. Wu , 2019, The Cambridge History of China.
[32] Pierre Nolin,et al. Connection probabilities and RSW‐type bounds for the two‐dimensional FK Ising model , 2011 .
[33] Conformal Radii for Conformal Loop Ensembles , 2006, math/0611687.
[34] H. Duminil-Copin,et al. On the critical parameters of the q ≤ 4 random-cluster model on isoradial graphs , 2015, 1507.01356.
[35] S. Smirnov,et al. Random curves, scaling limits and Loewner evolutions , 2012, 1212.6215.
[36] The phase transitions of the planar random-cluster and Potts models with $$q \ge 1$$q≥1 are sharp , 2014, 1409.3748.
[37] M. Fisher. Renormalization group theory: Its basis and formulation in statistical physics , 1998 .
[38] P. Nolin. Near-critical percolation in two dimensions , 2007, 0711.4948.
[39] Hao Wu,et al. On the Convergence of FK–Ising Percolation to $$\mathrm {SLE}(16/3, (16/3)-6)$$ , 2020, Journal of Theoretical Probability.
[40] H. Duminil-Copin. Lectures on the Ising and Potts Models on the Hypercubic Lattice , 2017, 1707.00520.
[41] O. Schramm,et al. On the Scaling Limits of Planar Percolation , 2011, 1101.5820.
[42] Hao Wu. Alternating arm exponents for the critical planar Ising model , 2016, The Annals of Probability.
[43] C. Fortuin,et al. On the random-cluster model: I. Introduction and relation to other models , 1972 .
[44] H. Duminil-Copin,et al. The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1 , 2010, Probability Theory and Related Fields.
[45] H. Duminil-Copin,et al. Renormalization of Crossing Probabilities in the Planar Random-Cluster Model , 2019, Moscow Mathematical Journal.
[46] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[47] Alexander M. Polyakov,et al. Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .
[48] On the convergence of FK-Ising Percolation to SLE$(16/3, 16/3-6)$ , 2018, 1802.03939.
[49] D. Welsh,et al. Percolation probabilities on the square lattice , 1978 .
[50] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.
[51] Ioan Manolescu,et al. Discontinuity of the phase transition for the planar random-cluster and Potts models with $q>4$ , 2016, 1611.09877.
[52] V. Sidoravicius,et al. Planar lattices do not recover from forest fires , 2013, 1312.7004.
[53] H. Duminil-Copin,et al. Crossing probabilities in topological rectangles for the critical planar FK-Ising model , 2013, 1312.7785.
[54] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .