Planar random-cluster model: fractal properties of the critical phase

This paper is studying the critical regime of the planar random-cluster model on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^2$$\end{document}Z2 with cluster-weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [1,4)$$\end{document}q∈[1,4). More precisely, we prove crossing estimates in quads which are uniform in their boundary conditions and depend only on their extremal lengths. They imply in particular that any fractal boundary is touched by macroscopic clusters, uniformly in its roughness or the configuration on the boundary. Additionally, they imply that any sub-sequential scaling limit of the collection of interfaces between primal and dual clusters is made of loops that are non-simple. We also obtain a number of properties of so-called arm-events: three universal critical exponents (two arms in the half-plane, three arms in the half-plane and five arms in the bulk), quasi-multiplicativity and well-separation properties (even when arms are not alternating between primal and dual), and the fact that the four-arm exponent is strictly smaller than 2. These results were previously known only for Bernoulli percolation (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q = 1$$\end{document}q=1) and the FK-Ising model (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q = 2$$\end{document}q=2). Finally, we prove new bounds on the one, two and four-arm exponents for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [1,2]$$\end{document}q∈[1,2], as well as the one-arm exponent in the half-plane. These improve the previously known bounds, even for Bernoulli percolation.

[1]  C. Newman,et al.  Critical percolation exploration path and SLE6: a proof of convergence , 2006, math/0604487.

[2]  Oded Schramm,et al.  Basic properties of SLE , 2001 .

[3]  Wendelin Werner,et al.  Conformal invariance of planar loop-erased random walks and uniform spanning trees , 2001 .

[4]  L. Russo A note on percolation , 1978 .

[5]  H. Duminil-Copin,et al.  Convergence of Ising interfaces to Schramm's SLE curves , 2013, 1312.0533.

[6]  Planar random-cluster model: scaling relations , 2020, 2011.15090.

[7]  C. Newman,et al.  Exponential Decay for the Near‐Critical Scaling Limit of the Planar Ising Model , 2017, Communications on Pure and Applied Mathematics.

[8]  C. Newman,et al.  Two-Dimensional Critical Percolation: The Full Scaling Limit , 2006, math/0605035.

[9]  S. Smirnov,et al.  Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE , 2016, 1609.08527.

[10]  O. Schramm,et al.  The scaling limits of near-critical and dynamical percolation , 2013, 1305.5526.

[11]  V. Sidoravicius,et al.  Almost All Words Are Seen In Critical Site Percolation On The Triangular Lattice , 1998 .

[12]  Exploration trees and conformal loop ensembles , 2006, math/0609167.

[13]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[14]  H. Duminil-Copin,et al.  A new computation of the critical point for the planar random-cluster model with $q\ge1$ , 2016, 1604.03702.

[15]  W. Werner,et al.  Conformal loop ensembles: the Markovian characterization and the loop-soup construction , 2010, 1006.2374.

[16]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[17]  O. Schramm,et al.  Quantitative noise sensitivity and exceptional times for percolation , 2005, math/0504586.

[18]  Y. Ikhlef,et al.  Finite-Size Left-Passage Probability in Percolation , 2012, 1202.5476.

[19]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[20]  G. Ray,et al.  A short proof of the discontinuity of phase transition in the planar random-cluster model with $q>4$ , 2019, 1904.10557.

[21]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[22]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[23]  S. Smirnov The connective constant of the honeycomb lattice equals 2+2 , 2012 .

[24]  O. Schramm,et al.  On the Scaling Limits of Planar Percolation , 2011 .

[25]  Vladas Sidoravicius,et al.  Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with $${1 \le q \le 4}$$1≤q≤4 , 2015, 1505.04159.

[26]  M. Biskup,et al.  Gibbs states of graphical representations of the Potts model with external fields , 2000 .

[27]  H. Duminil-Copin,et al.  Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with 1≤q≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} , 2016, Communications in Mathematical Physics.

[28]  H. Duminil-Copin,et al.  Planar percolation with a glimpse of Schramm–Loewner evolution , 2011, 1107.0158.

[29]  H. Duminil-Copin,et al.  Macroscopic loops in the loop $O(n)$ model at Nienhuis' critical point , 2017, Journal of the European Mathematical Society.

[30]  Vincent Tassion,et al.  Sharp phase transition for the random-cluster and Potts models via decision trees , 2017, Annals of Mathematics.

[31]  R. de Crespigny Wu , 2019, The Cambridge History of China.

[32]  Pierre Nolin,et al.  Connection probabilities and RSW‐type bounds for the two‐dimensional FK Ising model , 2011 .

[33]  Conformal Radii for Conformal Loop Ensembles , 2006, math/0611687.

[34]  H. Duminil-Copin,et al.  On the critical parameters of the q ≤ 4 random-cluster model on isoradial graphs , 2015, 1507.01356.

[35]  S. Smirnov,et al.  Random curves, scaling limits and Loewner evolutions , 2012, 1212.6215.

[36]  The phase transitions of the planar random-cluster and Potts models with $$q \ge 1$$q≥1 are sharp , 2014, 1409.3748.

[37]  M. Fisher Renormalization group theory: Its basis and formulation in statistical physics , 1998 .

[38]  P. Nolin Near-critical percolation in two dimensions , 2007, 0711.4948.

[39]  Hao Wu,et al.  On the Convergence of FK–Ising Percolation to $$\mathrm {SLE}(16/3, (16/3)-6)$$ , 2020, Journal of Theoretical Probability.

[40]  H. Duminil-Copin Lectures on the Ising and Potts Models on the Hypercubic Lattice , 2017, 1707.00520.

[41]  O. Schramm,et al.  On the Scaling Limits of Planar Percolation , 2011, 1101.5820.

[42]  Hao Wu Alternating arm exponents for the critical planar Ising model , 2016, The Annals of Probability.

[43]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[44]  H. Duminil-Copin,et al.  The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1 , 2010, Probability Theory and Related Fields.

[45]  H. Duminil-Copin,et al.  Renormalization of Crossing Probabilities in the Planar Random-Cluster Model , 2019, Moscow Mathematical Journal.

[46]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[47]  Alexander M. Polyakov,et al.  Infinite conformal symmetry of critical fluctuations in two dimensions , 1984 .

[48]  On the convergence of FK-Ising Percolation to SLE$(16/3, 16/3-6)$ , 2018, 1802.03939.

[49]  D. Welsh,et al.  Percolation probabilities on the square lattice , 1978 .

[50]  S. Smirnov Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.

[51]  Ioan Manolescu,et al.  Discontinuity of the phase transition for the planar random-cluster and Potts models with $q>4$ , 2016, 1611.09877.

[52]  V. Sidoravicius,et al.  Planar lattices do not recover from forest fires , 2013, 1312.7004.

[53]  H. Duminil-Copin,et al.  Crossing probabilities in topological rectangles for the critical planar FK-Ising model , 2013, 1312.7785.

[54]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .