A Dynkin Game on Assets with Incomplete Information on the Return

This paper studies a 2-players zero-sum Dynkin game arising from pricing an option on an asset whose rate of return is unknown to both players. Using filtering techniques we first reduce the problem to a zero-sum Dynkin game on a bi-dimensional diffusion $(X,Y)$. Then we characterize the existence of a Nash equilibrium in pure strategies in which each player stops at the hitting time of $(X,Y)$ to a set with moving boundary. A detailed description of the stopping sets for the two players is provided along with global $C^1$ regularity of the value function.

[1]  M. Aschwanden Statistics of Random Processes , 2021, Biomedical Measurement Systems and Data Science.

[2]  Yuri Kifer,et al.  Game options , 2000, Finance Stochastics.

[3]  Erik Ekstrom,et al.  On the value of optimal stopping games , 2006 .

[4]  E. B. Dynkin,et al.  Markov processes; theorems and problems , 2013 .

[5]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[6]  Goran Peskir,et al.  Embedding laws in diffusions by functions of time , 2012, 1201.5321.

[7]  G. Ferrari,et al.  A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis , 2013 .

[8]  Tiziano De Angelis,et al.  A Note on the Continuity of Free-Boundaries in Finite-Horizon Optimal Stopping Problems for One-Dimensional Diffusions , 2013, SIAM J. Control. Optim..

[9]  Giorgio Ferrari,et al.  A Stochastic Partially Reversible Investment Problem on a Finite Time-Horizon: Free-Boundary Analysis , 2013, 1303.6189.

[10]  S. Yung,et al.  GAME CALL OPTIONS REVISITED , 2014 .

[11]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[12]  Andreas E. Kyprianou,et al.  Some calculations for Israeli options , 2004, Finance Stochastics.

[13]  A. Shiryaev,et al.  On the sequential testing problem for some diffusion processes , 2011 .

[14]  Erik Ekström,et al.  Optimal Selling of an Asset under Incomplete Information , 2011 .

[15]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[16]  Goran Peskir,et al.  Optimal Stopping Games for Markov Processes , 2008, SIAM J. Control. Optim..

[17]  J. Bismut,et al.  Temps d'arrÊt optimal, théorie générale des processus et processus de Markov , 1977 .

[18]  G. Peskir,et al.  Global $C^{1}$ regularity of the value function in optimal stopping problems , 2018, The Annals of Applied Probability.

[19]  G. Peskir Optimal Stopping Games and Nash Equilibrium , 2009 .

[20]  Anja Sturm,et al.  Stochastic Integration and Differential Equations. Second Edition. , 2005 .

[21]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[22]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[23]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[24]  E. B. Dynkin,et al.  Game variant of a problem on optimal stopping , 1969 .

[25]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[26]  J. Jacod Shiryaev : Limit theorems for stochastic processes , 1987 .

[27]  J. Mertens Théorie des processus stochastiques généraux applications aux surmartingales , 1972 .

[28]  A. Bensoussan,et al.  Nonlinear variational inequalities and differential games with stopping times , 1974 .

[29]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[30]  N. Karoui Les Aspects Probabilistes Du Controle Stochastique , 1981 .

[31]  M. A. Maingueneau Temps d’arret optimaux et theorie generale , 1978 .

[32]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[33]  Sören Christensen,et al.  On Finding Equilibrium Stopping Times for Time-Inconsistent Markovian Problems , 2017, SIAM J. Control. Optim..