Blockmodeling of multilevel networks

Abstract The article presents several approaches to the blockmodeling of multilevel network data. Multilevel network data consist of networks that are measured on at least two levels (e.g. between organizations and people) and information on ties between those levels (e.g. information on which people are members of which organizations). Several approaches will be considered: a separate analysis of the levels; transforming all networks to one level and blockmodeling on this level using information from all levels; and a truly multilevel approach where all levels and ties among them are modeled at the same time. Advantages and disadvantages of these approaches will be discussed.

[1]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[2]  Elisa Bellotti,et al.  Getting funded. Multi-level network of physicists in Italy , 2012, Soc. Networks.

[3]  Emmanuel Lazega,et al.  Organizational vs. personal social capital in scientists' performance: A multi-level network study of elite French cancer researchers (1996-1998) , 2006, Scientometrics.

[4]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[5]  S. Boorman,et al.  Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions , 1976, American Journal of Sociology.

[6]  Hans-Hermann Bock,et al.  Data Science, Classification and Related Methods , 1998 .

[7]  Dawn Iacobucci,et al.  Social networks with two sets of actors , 1990 .

[8]  S. Wasserman,et al.  Models and Methods in Social Network Analysis , 2005 .

[9]  A. Ferligoj,et al.  Direct multicriteria clustering algorithms , 1992 .

[10]  V. Batagelj,et al.  Generalized blockmodeling with Pajek , 2004, Advances in Methodology and Statistics.

[11]  L. Hubert,et al.  Comparing partitions , 1985 .

[12]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[13]  Vladimir Batagelj,et al.  Constrained Clustering Problems , 1998 .

[14]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[15]  Peng Wang,et al.  Exponential random graph models for multilevel networks , 2013, Soc. Networks.

[16]  D. Steinley Properties of the Hubert-Arabie adjusted Rand index. , 2004, Psychological methods.

[17]  Ronald S. Burt,et al.  Positions in Networks , 1976 .

[18]  Vladimir Batagelj,et al.  POSITIONAL ANALYSES OF SOCIOMETRIC DATA , 2002 .

[19]  Hans-Hermann Bock,et al.  Data Science and Classification (Studies in Classification, Data Analysis, and Knowledge Organization) , 2006 .

[20]  Vladimir Batagelj,et al.  Optimizational Approach to Blockmodeling , 1996 .

[21]  Dawn Iacobucci,et al.  Statistical Modelling of One-Mode and Two-Mode Networks: Simultaneous Analysis of Graphs and Bipartite Graphs , 1991 .

[22]  S. Boorman,et al.  Social Structure from Multiple Networks. II. Role Structures , 1976, American Journal of Sociology.

[23]  A. Ferligoj,et al.  Generalized Blockmodeling: Preface , 2004 .

[24]  S. Wasserman,et al.  Building stochastic blockmodels , 1992 .

[25]  Vladimir Batagelj,et al.  Generalized blockmodeling of two-mode network data , 2004, Soc. Networks.

[26]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[27]  Aleš Žiberna,et al.  Generalized blockmodeling of sparse networks , 2013, Advances in Methodology and Statistics.

[28]  Vladimir Batagelj,et al.  Partitioning networks based on generalized concepts of equivalence , 1994 .

[29]  Emmanuel Lazega,et al.  Catching up with big fish in the big pond? Multi-level network analysis through linked design , 2008, Soc. Networks.

[30]  Daniel J. Brass,et al.  Taking Stock of Networks and Organizations: A Multilevel Perspective , 2004 .

[31]  S. Borgatti,et al.  Regular blockmodels of multiway, multimode matrices☆ , 1992 .

[32]  A. Ferligoj,et al.  An optimizational approach to regular equivalence , 1992 .

[33]  K. Reitz,et al.  Graph and Semigroup Homomorphisms on Networks of Relations , 1983 .

[34]  Vladimir Batagelj,et al.  Fitting Pre-specified Blockmodels , 1998 .

[35]  Luciano Rossoni,et al.  Models and methods in social network analysis , 2006 .

[36]  Patrick Doreian,et al.  Multiobjective Blockmodeling for Social Network Analysis , 2012, Psychometrika.

[37]  Matthias Ehrgott,et al.  Saddle Points and Pareto Points in Multiple Objective Programming , 2005, J. Glob. Optim..

[38]  Ales Ziberna,et al.  Generalized blockmodeling of valued networks , 2013, Soc. Networks.

[39]  Alessandro Lomi,et al.  A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice , 2013, Soc. Networks.

[40]  A. D. Gordon A survey of constrained classification , 1996 .

[41]  P. Arabie,et al.  An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling , 1975 .

[42]  M. Brusco,et al.  A Tabu-Search Heuristic for Deterministic Two-Mode Blockmodeling of Binary Network Matrices , 2011, Psychometrika.

[43]  Emmanuel Lazega,et al.  Network Lift from Dual Alters: Extended Opportunity Structures from a Multilevel and Structural Perspective , 2013 .