A hybrid stress ANS solid‐shell element and its generalization for smart structure modelling. Part I—solid‐shell element formulation

In the recent years, solid-shell finite element models which possess no rotational degrees of freedom and applicable to thin plate/shell analyses have attracted considerable attention. Development of these elements are not straightforward. Shear, membrane, trapezoidal, thickness and dilatational lockings must been visioned. In this part of this paper, a novel eight-node solid-shell element is proposed. To resolve the shear and trapezoidal lockings, the assumed natural strain (ANS) method is resorted to. The hybrid-stress formulation is employed to rectify the thickness and dilatational locking. The element is computationally more efficient than the conventional hybrid elements by adopting orthogonal-assumed stress modes and enforcing admissible sparsity in the flexibility matrix. Popular benchmark tests are exercised to illustrate the efficacy of the elements. In Part II of the paper, the element will be generalized for smart structure modelling by including the piezoelectric effect. Copyright © 2000 John Wiley & Sons, Ltd.

[1]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[2]  C. L. Chow,et al.  On invariance of isoparametric hybrid/mixed elements , 1992 .

[3]  Theodore H. H. Pian,et al.  Finite elements based on consistently assumed stresses and displacements , 1985 .

[4]  Richard H. Macneal,et al.  A theorem regarding the locking of tapered four‐noded membrane elements , 1987 .

[5]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[6]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[7]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .

[8]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[9]  H. S. Tzou,et al.  A thin piezoelectric hexahedron finite element applied to design of smart continua , 1994 .

[10]  K. Y. Sze,et al.  A novel approach for devising higher‐order hybrid elements , 1993 .

[11]  K. Y. Sze,et al.  On immunizing five‐beta hybrid‐stress element models from ‘trapezoidal locking’ in practical analyses , 2000 .

[12]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[13]  Fu-Kuo Chang,et al.  Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators , 1992 .

[14]  Chang-Chun Wu,et al.  On optimization approaches of hybrid stress elements , 1995 .

[15]  H. S. Tzou,et al.  Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements , 1996 .

[16]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[17]  R. Hauptmann,et al.  A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .

[18]  Vijay K. Varadan,et al.  FINITE ELEMENT MODELLING OF STRUCTURES INCLUDING PIEZOELECTRIC ACTIVE DEVICES , 1997 .

[19]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[20]  W. Hwang,et al.  Vibration Control of a Laminated Plate with Piezoelectric Sensor/Actuator: Finite Element Formulation and Modal Analysis , 1993 .

[21]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[22]  Amin Ghali,et al.  Hybrid hexahedral element for solids, plates, shells and beams by selective scaling , 1993 .

[23]  Chahngmin Cho,et al.  An efficient assumed strain element model with six DOF per node for geometrically non‐linear shells , 1995 .

[24]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[25]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[26]  E. Ramm,et al.  Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept , 1996 .

[27]  K. Y. Sze,et al.  A hybrid stress ANS solid-shell element and its generalization for smart structure modelling. Part II?smart structure modelling , 2000 .

[28]  K. Y. Sze,et al.  An Explicit Hybrid Stabilized Eighteen-Node Solid Element for Thin Shell Analysis , 1997 .

[29]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[30]  Carlo Sansour,et al.  Large strain deformations of elastic shells constitutive modelling and finite element analysis , 1998 .

[31]  S. Lee,et al.  An eighteen‐node solid element for thin shell analysis , 1988 .

[32]  K. Y. Sze,et al.  Efficient formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible matrix formulation , 1992 .