Radiolabeled Peptides: Valuable Tools for the Detection and Treatment of Cancer

Human cancer cells overexpress many peptide receptors as molecular targets. Radiolabeled peptides that bind with high affinity and specificity to the receptors on tumor cells hold great potential for both diagnostic imaging and targeted radionuclide therapy. The advantage of solid-phase peptide synthesis, the availability of different chelating agents and prosthetic groups and bioconjugation techniques permit the facile preparation of a wide variety of peptide-based targeting molecules with diverse biological and tumor targeting properties. Some of these peptides, including somatostatin, bombesin, vasoactive intestinal peptide, gastrin, neurotensin, exendin and RGD are currently under investigation. It is anticipated that in the near future many of these peptides may find applications in nuclear oncology. This article presents recent developments in the field of small peptides, and their applications in the diagnosis and treatment of cancer.

[1]  V. Ambrosini,et al.  Radiopeptide Imaging and Therapy in Europe , 2011, The Journal of Nuclear Medicine.

[2]  F. Forrer,et al.  Bombesin Antagonist–Based Radioligands for Translational Nuclear Imaging of Gastrin-Releasing Peptide Receptor–Positive Tumors , 2011, The Journal of Nuclear Medicine.

[3]  R. Schibli,et al.  PEGylation of (99m)Tc-labeled bombesin analogues improves their pharmacokinetic properties. , 2011, Nuclear medicine and biology.

[4]  W. Weber,et al.  First Clinical Evidence That Imaging with Somatostatin Receptor Antagonists Is Feasible , 2011, The Journal of Nuclear Medicine.

[5]  W. Weber,et al.  Novel 64Cu- and 68Ga-Labeled RGD Conjugates Show Improved PET Imaging of ανβ3 Integrin Expression and Facile Radiosynthesis , 2011, The Journal of Nuclear Medicine.

[6]  Wolfgang A Weber,et al.  PET of Somatostatin Receptor–Positive Tumors Using 64Cu- and 68Ga-Somatostatin Antagonists: The Chelate Makes the Difference , 2011, The Journal of Nuclear Medicine.

[7]  P. Ell,et al.  Glucagon-Like Peptide-1 Versus Somatostatin Receptor Targeting Reveals 2 Distinct Forms of Malignant Insulinomas , 2011, The Journal of Nuclear Medicine.

[8]  Matthias Briel,et al.  Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  L. Królicki,et al.  Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[10]  A. Hubalewska-Dydejczyk,et al.  99mTc labeled GLP-1 scintigraphy with the use of [Lys40-(Ahx-HYNIC/EDDA)NH2]-Exendin-4 in the insulinoma localization , 2011 .

[11]  W. Oyen,et al.  Comparative biodistribution of 12 111In-labelled gastrin/CCK2 receptor-targeting peptides , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[12]  R. Baum,et al.  Highly improved metabolic stability and pharmacokinetics of indium-111-DOTA-gastrin conjugates for targeting of the gastrin receptor. , 2011, Journal of medicinal chemistry.

[13]  E. Krenning,et al.  Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[14]  F. Forrer,et al.  Targeted radiotherapy with radiolabeled somatostatin analogs. , 2011, Endocrinology and metabolism clinics of North America.

[15]  S. Achilefu,et al.  In Vitro and In Vivo Evaluation of 64Cu-Labeled SarAr-Bombesin Analogs in Gastrin-Releasing Peptide Receptor–Expressing Prostate Cancer , 2011, The Journal of Nuclear Medicine.

[16]  S. Ametamey,et al.  18F-Labeled Bombesin Analog for Specific and Effective Targeting of Prostate Tumors Expressing Gastrin-Releasing Peptide Receptors , 2011, The Journal of Nuclear Medicine.

[17]  Stephanie R. Lane,et al.  Optimization, biological evaluation and microPET imaging of copper-64-labeled bombesin agonists, [64Cu-NO2A-(X)-BBN(7-14)NH2], in a prostate tumor xenografted mouse model. , 2010, Nuclear medicine and biology.

[18]  F. Pattou,et al.  GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle. , 2010, The New England journal of medicine.

[19]  B. Keil,et al.  Exendin-4–Based Radiopharmaceuticals for Glucagonlike Peptide-1 Receptor PET/CT and SPECT/CT , 2010, Journal of Nuclear Medicine.

[20]  Samantha V. Sublett,et al.  Evaluation of [99mTc-(CO)3-X-Y-Bombesin(7-14)NH2] conjugates for targeting gastrin-releasing peptide receptors overexpressed on breast carcinoma. , 2010, Anticancer research.

[21]  F. Forrer,et al.  Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[22]  W. Oyen,et al.  68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[23]  A. Nunn,et al.  177Lu-AMBA Biodistribution, Radiotherapeutic Efficacy, Imaging, and Autoradiography in Prostate Cancer Models with Low GRP-R Expression , 2009, Journal of Nuclear Medicine.

[24]  F. Forrer,et al.  Glucagon-like peptide-1 receptor imaging for localization of insulinomas. , 2009, The Journal of clinical endocrinology and metabolism.

[25]  S. Kneifel,et al.  Evaluation of a 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid–Conjugated Bombesin-Based Radioantagonist for the Labeling with Single-Photon Emission Computed Tomography, Positron Emission Tomography, and Therapeutic Radionuclides , 2009, Clinical Cancer Research.

[26]  Fan Wang,et al.  99mTcO(MAG2-3G3-dimer): a new integrin αvβ3-targeted SPECT radiotracer with high tumor uptake and favorable pharmacokinetics , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[27]  Fan Wang,et al.  Noninvasive imaging of tumor integrin expression using 18F-labeled RGD dimer peptide with PEG4 linkers , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[28]  E. Krenning,et al.  Comparison of three radiolabelled peptide analogues for CCK-2 receptor scintigraphy in medullary thyroid carcinoma , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[29]  Fan Wang,et al.  68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[30]  R. Schibli,et al.  Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. , 2008, Bioconjugate chemistry.

[31]  S. Achilefu,et al.  Preparation and Biological Evaluation of 64Cu-CB-TE2A-sst2-ANT, a Somatostatin Antagonist for PET Imaging of Somatostatin Receptor–Positive Tumors , 2008, Journal of Nuclear Medicine.

[32]  Emanuel Christ,et al.  Glucagon-like peptide 1-receptor scans to localize occult insulinomas. , 2008, The New England journal of medicine.

[33]  David A Mankoff,et al.  Tumor Receptor Imaging , 2008, Journal of Nuclear Medicine.

[34]  J. Burdette In vivo imaging of molecular targets and their function in endocrinology. , 2008, Journal of molecular endocrinology.

[35]  E. Krenning,et al.  Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  S. Jurisson,et al.  99mTc(CO)3-DTMA bombesin conjugates having high affinity for the GRP receptor. , 2008, Nuclear medicine and biology.

[37]  C. Decristoforo,et al.  68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[38]  Eun Kyoung Ryu,et al.  18F-Labeled BBN-RGD Heterodimer for Prostate Cancer Imaging , 2008, Journal of Nuclear Medicine.

[39]  R. Jensen,et al.  Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states , 2008, Current opinion in endocrinology, diabetes, and obesity.

[40]  Anastasia Nikolopoulou,et al.  Bombesin Receptor Antagonists May Be Preferable to Agonists for Tumor Targeting , 2008, Journal of Nuclear Medicine.

[41]  M. Essen,et al.  et al Treatment with the radiolabeled somatostatinanalog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival Journal of Clinical Oncology : , 2008 .

[42]  J. Correia,et al.  A 99mTc(CO)3-labeled pyrazolyl–α-melanocyte-stimulating hormone analog conjugate for melanoma targeting , 2008 .

[43]  D. Tourwé,et al.  A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[44]  Xiaoyuan Chen,et al.  68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[45]  Jason S. Lewis,et al.  Gallium-68-labeled DOTA-rhenium-cyclized alpha-melanocyte-stimulating hormone analog for imaging of malignant melanoma. , 2007, Nuclear medicine and biology.

[46]  Timothy J. Hoffman,et al.  In Vivo Evaluation and Small-Animal PET/CT of a Prostate Cancer Mouse Model Using 64Cu Bombesin Analogs: Side-by-Side Comparison of the CB-TE2A and DOTA Chelation Systems , 2007, Journal of Nuclear Medicine.

[47]  Peter Hohenberger,et al.  68Ga-Labeled Bombesin Studies in Patients with Gastrointestinal Stromal Tumors: Comparison with 18F-FDG , 2007, Journal of Nuclear Medicine.

[48]  S. Figueroa,et al.  [64Cu-NOTA-8-Aoc-BBN(7-14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues , 2007, Proceedings of the National Academy of Sciences.

[49]  B. Nock,et al.  [99mTc]Demotensin 5 and 6 in the NTS1-R-targeted imaging of tumours: synthesis and preclinical results , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[50]  S. Kneifel,et al.  [Lys40(Ahx-DTPA-111In)NH2]-Exendin-4 Is a Highly Efficient Radiotherapeutic for Glucagon-Like Peptide-1 Receptor–Targeted Therapy for Insulinoma , 2007, Clinical Cancer Research.

[51]  S. Gambhir,et al.  Small-Animal PET of Melanocortin 1 Receptor Expression Using a 18F-Labeled α-Melanocyte-Stimulating Hormone Analog , 2007, Journal of Nuclear Medicine.

[52]  Jason S. Lewis,et al.  64Cu-labeled CB-TE2A and Sar conjugated RGD peptide analogs for targeting angiogenesis: Comparison of their biological activity , 2007 .

[53]  A. Beck‐Sickinger,et al.  New [99mTc]bombesin analogues with improved biodistribution for targeting gastrin releasing-peptide receptor-positive tumors. , 2007, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[54]  W. Oyen,et al.  αvβ3 Integrin‐targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide , 2007 .

[55]  R. Valkema,et al.  Peptide Receptor Radionuclide Therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours , 2007, Acta oncologica.

[56]  L. Strauss,et al.  68 Ga-Labeled Bombesin Studies in Patients with Gastrointestinal Stromal Tumors: Comparison with 18 F-FDG , 2007 .

[57]  Jason S. Lewis,et al.  Synthesis and biologic evaluation of 64Cu-labeled rhenium-cyclized alpha-MSH peptide analog using a cross-bridged cyclam chelator. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[58]  M. Walter,et al.  Influence of different spacers on the biological profile of a DOTA-somatostatin analogue. , 2007, Bioconjugate chemistry.

[59]  W. Oyen,et al.  Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. , 2007, Nuclear medicine and biology.

[60]  E. Krenning,et al.  Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[61]  T. Quinn,et al.  99mTc- and 111In-labeled alpha-melanocyte-stimulating hormone peptides as imaging probes for primary and pulmonary metastatic melanoma detection. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[62]  F. Forrer,et al.  Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[63]  E. Krenning,et al.  Novel 111In-labelled bombesin analogues for molecular imaging of prostate tumours , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[64]  W. Oyen,et al.  Improved targeting of the αvβ3 integrin by multimerisation of RGD peptides , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[65]  T. Visser,et al.  Long-term toxicity of [177Lu-DOTA0,Tyr3]octreotate in rats , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[66]  M. Eisenhut,et al.  DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[67]  E. Krenning,et al.  Peptide receptor radionuclide therapy with 177Lu-octreotate in patients with foregut carcinoid tumours of bronchial, gastric and thymic origin , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[68]  B. Keil,et al.  A new technique for in vivo imaging of specific GLP-1 binding sites: First results in small rodents , 2006, Regulatory Peptides.

[69]  P. Erba,et al.  Receptor-mediated tumor targeting with radiolabeled peptides: there is more to it than somatostatin analogs. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[70]  C Susini,et al.  Rationale for the use of somatostatin analogs as antitumor agents. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[71]  Martin Gotthardt,et al.  [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[72]  C. Decristoforo,et al.  [99mTc]HYNIC-RGD for imaging integrin αvβ3 expression , 2006 .

[73]  Judit Erchegyi,et al.  Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors , 2006, Proceedings of the National Academy of Sciences.

[74]  A. Hubalewska-Dydejczyk,et al.  99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[75]  C. Punt,et al.  Clinical applications of newer radionuclide therapies. , 2006, European journal of cancer.

[76]  Raffaella Barone,et al.  Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. , 2006, Seminars in nuclear medicine.

[77]  Klemens Scheidhauer,et al.  Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-octreotide. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[78]  W. Oyen,et al.  Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[79]  Eduard Schreibmann,et al.  18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[80]  G. Mariani,et al.  Receptor radionuclide therapy of tumors: a road from basic research to clinical applications. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[81]  W. Oyen,et al.  Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[82]  T. Nayak,et al.  213Bi-[DOTA0, Tyr3]Octreotide Peptide Receptor Radionuclide Therapy of Pancreatic Tumors in a Preclinical Animal Model , 2006, Clinical Cancer Research.

[83]  B. Bernard,et al.  Anticancer activity of targeted proapoptotic peptides. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[84]  S. Denardo Combined molecular targeting for cancer therapy: a new paradigm in need of molecular imaging. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[85]  J. Parry,et al.  MicroPET Imaging of Breast Cancer Using Radiolabeled Bombesin Analogs Targeting the Gastrin-releasing Peptide Receptor , 2006, Breast Cancer Research and Treatment.

[86]  I. Virgolini,et al.  Comparison of 111In-DOTA-DPhe1-Tyr3-octreotide and 111In-DOTA-lanreotide scintigraphy and dosimetry in patients with neuroendocrine tumours , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[87]  L. Strauss,et al.  Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[88]  A. Grossman,et al.  Treatment of advanced neuroendocrine tumours with radiolabelled somatostatin analogues. , 2005, Endocrine-related cancer.

[89]  S. Gambhir,et al.  microPET Imaging of Glioma Integrin αvβ3 Expression Using 64Cu-Labeled Tetrameric RGD Peptide , 2005 .

[90]  R. Jensen,et al.  Development of Simplified Vasoactive Intestinal Peptide Analogs with Receptor Selectivity and Stability for Human Vasoactive Intestinal Peptide/Pituitary Adenylate Cyclase-Activating Polypeptide Receptors , 2005, Journal of Pharmacology and Experimental Therapeutics.

[91]  M. Béhé,et al.  CCK-2/gastrin receptor-targeted tumor imaging with (99m)Tc-labeled minigastrin analogs. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[92]  H. Ghandehari,et al.  Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[93]  B. Bernard,et al.  111In-labelled somatostatin analogues in a rat tumour model: somatostatin receptor status and effects of peptide receptor radionuclide therapy , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[94]  A. Eberle,et al.  Melanoma targeting with DOTA-alpha-melanocyte-stimulating hormone analogs: structural parameters affecting tumor uptake and kidney uptake. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[95]  E. Krenning,et al.  Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[96]  Horst Kessler,et al.  Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron Emission Tomography and [18F]Galacto-RGD , 2005, PLoS medicine.

[97]  Martin A Walter,et al.  Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[98]  H. Ohki‐Hamazaki,et al.  Development and function of bombesin-like peptides and their receptors. , 2005, The International journal of developmental biology.

[99]  E. Krenning,et al.  Candidates for peptide receptor radiotherapy today and in the future. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[100]  Marion de Jong,et al.  Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0),Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[101]  R. Valkema,et al.  Endocrine tumours of the gastrointestinal tract. Peptide receptor radionuclide therapy. , 2005, Best practice & research. Clinical gastroenterology.

[102]  T. Quinn,et al.  -Melanocyte–Stimulating Hormone Peptide Analog in Murine and Human Melanoma-Bearing Mouse Models , 2004 .

[103]  R. Valkema,et al.  Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[104]  E. Krenning,et al.  Induction of apoptosis with hybrids of Arg-Gly-Asp molecules and peptides and antimitotic effects of hybrids of cytostatic drugs and peptides. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[105]  M. Pomper,et al.  A new high affinity technetium-99m-bombesin analogue with low abdominal accumulation. , 2005, Bioconjugate chemistry.

[106]  M. Schwaiger,et al.  [123I]Mtr-TOCA, a radioiodinated and carbohydrated analogue of octreotide: scintigraphic comparison with [111In]octreotide , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[107]  J. Reubi,et al.  68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5 , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[108]  S. Achilefu,et al.  Preparation and Biological Evaluation of Copper-64–Labeled Tyr3-Octreotate Using a Cross-Bridged Macrocyclic Chelator , 2004, Clinical Cancer Research.

[109]  B. Bernard,et al.  Increased cell death after therapy with an Arg-Gly-Asp-linked somatostatin analog. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[110]  J. Reubi,et al.  Synthesis and Evaluation of Bombesin Derivatives on the Basis of Pan-Bombesin Peptides Labeled with Indium-111, Lutetium-177, and Yttrium-90 for Targeting Bombesin Receptor-Expressing Tumors , 2004, Cancer Research.

[111]  W. Oyen,et al.  Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation. , 2004, Cancer biotherapy & radiopharmaceuticals.

[112]  M. Cremonesi,et al.  A comparison of 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[113]  Horst Kessler,et al.  First 18F-Labeled Tracer Suitable for Routine Clinical Imaging of sst Receptor-Expressing Tumors Using Positron Emission Tomography , 2004, Clinical Cancer Research.

[114]  M. Cremonesi,et al.  Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[115]  Subhani M Okarvi,et al.  Peptide‐based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases , 2004, Medicinal research reviews.

[116]  W. Oyen,et al.  Two technetium-99m-labeled cholecystokinin-8 (CCK8) peptides for scintigraphic imaging of CCK receptors. , 2004, Bioconjugate chemistry.

[117]  L. Kvols,et al.  Peptide receptor radionuclide therapy , 2005 .

[118]  B. Van Den Bossche,et al.  Receptor imaging in oncology by means of nuclear medicine: current status. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[119]  M. Schwaiger,et al.  First (18)F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. , 2004, Clinical cancer research : an official journal of the American Association for Cancer Research.

[120]  S. Mather,et al.  Radiolabelling of peptides for diagnosis and therapy of non-oncological diseases. , 2003, The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology.

[121]  Franz Buchegger,et al.  Radiolabeled neurotensin analog, 99mTc-NT-XI, evaluated in ductal pancreatic adenocarcinoma patients. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[122]  G. D. Vincentis,et al.  99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[123]  J. Reubi Peptide receptors as molecular targets for cancer diagnosis and therapy. , 2003, Endocrine reviews.

[124]  E. Krenning,et al.  Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[125]  H. Ulmer,et al.  An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[126]  J. Reubi,et al.  Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[127]  Donald L. Hayes,et al.  Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN[7-14]NH2: an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. , 2003, Nuclear medicine and biology.

[128]  E. Nitzsche,et al.  Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[129]  M. Schwaiger,et al.  PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[130]  R. Valkema,et al.  Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[131]  P. Angelberger,et al.  New trends in peptide receptor radioligands. , 2001, The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology.

[132]  M. Béhé,et al.  Imaging tumors with peptide-based radioligands. , 2001, The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology.

[133]  A. Beck‐Sickinger,et al.  Peptides as carrier for tumor diagnosis and treatment. , 2001, Current medicinal chemistry. Anti-cancer agents.

[134]  M. Thakur,et al.  99mTc labeled VIP analog: evaluation for imaging colorectal cancer. , 2001, Nuclear medicine and biology.

[135]  T. Visser,et al.  Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives , 2001, European Journal of Nuclear Medicine.

[136]  Shuang Liu,et al.  Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. , 2001, Bioconjugate chemistry.

[137]  B. Wiedenmann,et al.  Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours , 2000, European Journal of Nuclear Medicine.

[138]  C. Beglinger,et al.  Gastrin releasing peptide-preferring bombesin receptors mediate growth of human renal cell carcinoma. , 2000, Journal of the American Society of Nephrology : JASN.

[139]  W. Scheithauer,et al.  Value of peptide receptor scintigraphy using (123)I-vasoactive intestinal peptide and (111)In-DTPA-D-Phe1-octreotide in 194 carcinoid patients: Vienna University Experience, 1993 to 1998. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[140]  J. Reubi,et al.  Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use , 2000, European Journal of Nuclear Medicine.

[141]  T. Visser,et al.  Tumour uptake of the radiolabelled somatostatin analogue [DOTA0,TYR3]octreotide is dependent on the peptide amount , 1999, European Journal of Nuclear Medicine.

[142]  J P Vincent,et al.  Neurotensin and neurotensin receptors. , 1999, Trends in pharmacological sciences.

[143]  J. Mueller‐Brand,et al.  Yttrium-90-labelled somatostatin-analogue for cancer treatment , 1998, The Lancet.

[144]  P. Brooks,et al.  Role of integrins in angiogenesis. , 1996, European journal of cancer.

[145]  M. Mortrud,et al.  Cloning and Functional Characterization of a Family of Receptors for the Melanotropic Peptides , 1993, Annals of the New York Academy of Sciences.

[146]  H. Stein,et al.  CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[147]  Masayuki Masu,et al.  Structure and functional expression of the cloned rat neurotensin receptor , 1990, Neuron.

[148]  A. Eberle,et al.  Characterization of Receptors for α-Melanocyte-stimulating Hormone on Human Melanoma Cells , 1989 .

[149]  E. P. Krenning,et al.  LOCALISATION OF ENDOCRINE-RELATED TUMOURS WITH RADIOIODINATED ANALOGUE OF SOMATOSTATIN , 1989, The Lancet.

[150]  A. Eberle,et al.  Characterization of receptors for alpha-melanocyte-stimulating hormone on human melanoma cells. , 1989, Cancer research.

[151]  S. Bloom,et al.  Vasoactive intestinal peptide in man: pharmacokinetics, metabolic and circulatory effects. , 1978, Gut.