Multiple storage and erasure of fixed holograms in Fe−doped LiNbO3

Holograms were recorded and fixed simultaneously in heated (∼160°C) crystals of Fe−doped LiNbO3. With this procedure the crystals have the erase/write asymmetry required for multiple storage of high−diffraction−efficiency holograms. Five hundred fixed holograms, each with more than 2.5% diffraction efficiency, were recorded.

[1]  D. B. Fraser,et al.  HOLOGRAPHIC STORAGE IN LITHIUM NIOBATE , 1968 .

[2]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[3]  F. S. Chen,et al.  Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3 , 1969 .

[4]  D. Smith,et al.  Self-induced thermal distortion in the near field for a laser beam in a moving medium , 1971 .

[5]  Improved electrooptic materials for holographic storage applications , 1971 .

[6]  J. J. Amodei,et al.  HOLOGRAPHIC PATTERN FIXING IN ELECTRO‐OPTIC CRYSTALS , 1971 .

[7]  Alastair M. Glass,et al.  Control of the Susceptibility of Lithium Niobate to Laser‐Induced Refractive Index Changes , 1971 .

[8]  J. J. Amodei,et al.  Coupled‐Wave Analysis of Holographic Storage in LiNbO3 , 1972 .

[9]  D. Staebler,et al.  Thermally Fixed Holograms in LiNbO3 , 1972, IEEE Transactions on Sonics and Ultrasonics.

[10]  Frank K. Tittel,et al.  Angular selectivity of lithium niobate volume holograms , 1973 .

[11]  G. E. Peterson,et al.  Electronic structure and optical index damage of iron‐doped lithium niobate , 1973 .

[12]  D. Staebler,et al.  Fe-Doped LiNbO(3) for Read-Write Applications. , 1974, Applied optics.

[13]  D. Staebler,et al.  Control of the Fe2+ concentration in iron-doped lithium niobate , 1974 .

[14]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[15]  W. Phillips,et al.  Hologram storage in photochromic LiNbO3 , 1974 .