Hamiltonian structure and Darboux theorem for families of generalized Lotka–Volterra systems
暂无分享,去创建一个
[1] A. Weinstein. Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.
[2] P. Morrison,et al. Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. , 1980 .
[3] I. Dzyaloshinskiǐ,et al. Poisson brackets in condensed matter physics , 1980 .
[4] Jerrold E. Marsden,et al. The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .
[5] Darryl D. Holm,et al. Poisson brackets and clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity , 1983 .
[6] A constant of motion in 3D implies a local generalized Hamiltonian structure , 1997, 1910.03888.
[7] Franco Magri,et al. A Simple model of the integrable Hamiltonian equation , 1978 .
[8] Robert G. Littlejohn. Singular Poisson tensors , 1982 .
[9] Darryl D. Holm,et al. Hamiltonian chaos in nonlinear optical polarization dynamics , 1990 .
[10] Darryl D. Holm,et al. Multiple lie-poisson structures, reductions, and geometric phases for the Maxwell-Bloch travelling wave equations , 1992 .
[11] Yavuz Nutku,et al. Poisson structure of dynamical systems with three degrees of freedom , 1993 .
[12] Manfred Plank,et al. Bi-Hamiltonian Systems and Lotka-Volterra Equations: A Three Dimensional Classification , 1996 .
[13] M. Feix,et al. On the Hamiltonian structure of 2D ODE possessing an invariant , 1992 .
[14] Darryl D. Holm. Hamiltonian formalism for general-relativistic adiabatic fluids , 1985 .
[15] E. H. Kerner. DYNAMICAL ASPECTS OF KINETICS. , 1964, The Bulletin of mathematical biophysics.
[16] Darryl D. Holm,et al. Electromagnetic solitary waves in magnetized plasmas , 1985, Journal of Plasma Physics.
[17] Jerrold E. Marsden,et al. Stability and bifurcation of a rotating planar liquid drop , 1987 .
[18] On the construction of Hamiltonians , 1988 .
[19] M. León,et al. PREQUANTIZABLE POISSON MANIFOLDS AND JACOBI STRUCTURES , 1996 .
[20] A. Lichnerowicz,et al. Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .
[21] S. Hojman. Quantum algebras in classical mechanics , 1991 .
[22] M. Feix,et al. Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .
[23] Jerrold E. Marsden,et al. Stability of relative equilibria. Part II: Application to nonlinear elasticity , 1991 .
[24] W. Pauli. On the hamiltonian structure of non-local field theories , 1953 .
[25] Léon Brenig,et al. Complete factorisation and analytic solutions of generalized Lotka-Volterra equations , 1988 .
[26] Darryl D. Holm. Hamiltonian dynamics of a charged fluid, including electro- and magnetohydrodynamics , 1986 .
[27] A. Goriely. Investigation of Painlevé property under time singularities transformations , 1992 .
[28] Richard D Hazeltine,et al. Hamiltonian formulation of reduced magnetohydrodynamics , 1983 .
[29] R. Littlejohn. Hamiltonian perturbation theory in noncanonical coordinates , 1982 .
[30] Yavuz Nutku,et al. Hamiltonian structure of the Lotka-Volterra equations , 1990 .
[31] M. Plank. Hamiltonian structures for the n‐dimensional Lotka–Volterra equations , 1995 .
[32] M. Feix,et al. Generalized Hamiltonian structures for systems in three dimensions with a rescalable constant of motion , 1994 .
[33] E. H. Kerner. Comment on Hamiltonian structures for the n-dimensional Lotka–Volterra equations , 1997 .