Hamiltonian structure and Darboux theorem for families of generalized Lotka–Volterra systems

This work is devoted to the establishment of a Poisson structure for a format of equations known as generalized Lotka–Volterra systems. These equations, which include the classical Lotka–Volterra systems as a particular case, have been deeply studied in the literature. They have been shown to constitute a whole hierarchy of systems, the characterization of which is made in the context of simple algebra. Our main result is to show that this algebraic structure is completely translatable into the Poisson domain. Important Poisson structures features, such as the symplectic foliation and the Darboux canonical representation, rise as a result of rather simple matrix manipulations.

[1]  A. Weinstein Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.

[2]  P. Morrison,et al.  Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. , 1980 .

[3]  I. Dzyaloshinskiǐ,et al.  Poisson brackets in condensed matter physics , 1980 .

[4]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[5]  Darryl D. Holm,et al.  Poisson brackets and clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity , 1983 .

[6]  A constant of motion in 3D implies a local generalized Hamiltonian structure , 1997, 1910.03888.

[7]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[8]  Robert G. Littlejohn Singular Poisson tensors , 1982 .

[9]  Darryl D. Holm,et al.  Hamiltonian chaos in nonlinear optical polarization dynamics , 1990 .

[10]  Darryl D. Holm,et al.  Multiple lie-poisson structures, reductions, and geometric phases for the Maxwell-Bloch travelling wave equations , 1992 .

[11]  Yavuz Nutku,et al.  Poisson structure of dynamical systems with three degrees of freedom , 1993 .

[12]  Manfred Plank,et al.  Bi-Hamiltonian Systems and Lotka-Volterra Equations: A Three Dimensional Classification , 1996 .

[13]  M. Feix,et al.  On the Hamiltonian structure of 2D ODE possessing an invariant , 1992 .

[14]  Darryl D. Holm Hamiltonian formalism for general-relativistic adiabatic fluids , 1985 .

[15]  E. H. Kerner DYNAMICAL ASPECTS OF KINETICS. , 1964, The Bulletin of mathematical biophysics.

[16]  Darryl D. Holm,et al.  Electromagnetic solitary waves in magnetized plasmas , 1985, Journal of Plasma Physics.

[17]  Jerrold E. Marsden,et al.  Stability and bifurcation of a rotating planar liquid drop , 1987 .

[18]  On the construction of Hamiltonians , 1988 .

[19]  M. León,et al.  PREQUANTIZABLE POISSON MANIFOLDS AND JACOBI STRUCTURES , 1996 .

[20]  A. Lichnerowicz,et al.  Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .

[21]  S. Hojman Quantum algebras in classical mechanics , 1991 .

[22]  M. Feix,et al.  Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .

[23]  Jerrold E. Marsden,et al.  Stability of relative equilibria. Part II: Application to nonlinear elasticity , 1991 .

[24]  W. Pauli On the hamiltonian structure of non-local field theories , 1953 .

[25]  Léon Brenig,et al.  Complete factorisation and analytic solutions of generalized Lotka-Volterra equations , 1988 .

[26]  Darryl D. Holm Hamiltonian dynamics of a charged fluid, including electro- and magnetohydrodynamics , 1986 .

[27]  A. Goriely Investigation of Painlevé property under time singularities transformations , 1992 .

[28]  Richard D Hazeltine,et al.  Hamiltonian formulation of reduced magnetohydrodynamics , 1983 .

[29]  R. Littlejohn Hamiltonian perturbation theory in noncanonical coordinates , 1982 .

[30]  Yavuz Nutku,et al.  Hamiltonian structure of the Lotka-Volterra equations , 1990 .

[31]  M. Plank Hamiltonian structures for the n‐dimensional Lotka–Volterra equations , 1995 .

[32]  M. Feix,et al.  Generalized Hamiltonian structures for systems in three dimensions with a rescalable constant of motion , 1994 .

[33]  E. H. Kerner Comment on Hamiltonian structures for the n-dimensional Lotka–Volterra equations , 1997 .