A spectral method for the estimation of a thermomechanical heat source from infrared temperature measurements

Abstract The inverse problem of 2D time-dependent heat source reconstruction is solved. The scientific objectives are the quantification of thermal effects associated to the mechanical deformation of materials during tensile tests. The experiment provides infrared measurements of the specimen’s surface temperature and the inverse algorithm aims at providing a volumic heat source that is free of errors due to heat diffusion. This algorithm is based on an analytical solution of the direct problem in the Laplace-Fourier domain. The solution proposed here is compared to a previously used method [1] based on an adjoint formulation and a regularization of Tikhonov type. This allows to check the validity of the results.

[1]  J. Duffy,et al.  Measurement of the temperature profile during shear band formation in steels deforming at high strain rates , 1987 .

[2]  Claude Gasquet,et al.  Analyse de Fourier et applications : filtrage, calcul numérique, ondelettes , 1990 .

[3]  Guillaume Chiavassa,et al.  A fully adaptive wavelet algorithm for parabolic partial differential equations ? ? This work has be , 2001 .

[4]  Bernard Flament,et al.  Simulation de la conduction non linéaire en régime variable: décomposition sur les modes de branche , 1999 .

[5]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[6]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[7]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[8]  R. M. Cotta,et al.  Heat Conduction with Non-Linear Boundary Conditions via Integral Transforms and Symbolic Computation , 1998 .

[9]  D. Maillet,et al.  Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms , 2000 .

[10]  Renato M. Cotta THE INTEGRAL TRANSFORM METHOD IN COMPUTATIONAL HEAT AND FLUID FLOW , 1994 .

[11]  Fredrik Berntsson,et al.  Wavelet and Fourier Methods for Solving the Sideways Heat Equation , 1999, SIAM J. Sci. Comput..

[12]  Rogelio Luck,et al.  Solution to inverse heat conduction problems employing singular value decomposition and model-reduction , 2002 .

[13]  A. Neto,et al.  The estimation of space and time dependent strength of a volumetric heat source in a one-dimensional plate , 1994 .

[14]  C. Coles,et al.  Simultaneous Space Diffusivity and Source Term Reconstruction in 2D IHCP , 2001 .

[15]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[16]  George C. Kirby,et al.  A HYBRID NUMERICAL/EXPERIMENTAL TECHNIQUE FOR DETERMINING THE HEAT DISSIPATED DURING LOW CYCLE FATIGUE , 1990 .

[17]  Denis Maillet,et al.  A two-step regularized inverse solution for 2-D heat source reconstruction , 2008 .

[18]  André Chrysochoos,et al.  An infrared image processing to analyse the calorific effects accompanying strain localisation , 2000 .

[19]  M. Carin,et al.  Estimation of a source term in a two-dimensional heat transfer problem: application to an electron beam welding , 2006 .

[20]  Christophe Le Niliot,et al.  Infrared thermography applied to the resolution of inverse heat conduction problems: recovery of heat line sources and boundary conditions , 1998 .

[21]  A. Neveu,et al.  Synthèse modale: une méthode de sousstructuration dynamique pour la modélisation des systèmes thermiques linéaires , 1993 .

[22]  Yvon Jarny,et al.  Determination of heat sources and heat transfer coefficient for two-dimensional heat flow – numerical and experimental study , 2001 .