Advances in System Identification: Theory and Applications

This paper describes the main features and the most recent developments of system identification in the sense of data-driven modeling of dynamical systems. A brief summary of discrete time-invariant system identification techniques is provided, from the modern work of Gilbert, Kalman and Ho and the introduction of state-space realization, to the most recent developments of the identification of discrete time-varying and nonlinear systems. Important concepts of state-space realization, controllability and observability for linear systems are introduced along with more advanced methods to identify nonlinear dynamics. Numerical examples of varying complexity are considered to demonstrate the capability of the different approaches presented in this paper.

[1]  Clarence W. Rowley,et al.  Online dynamic mode decomposition for time-varying systems , 2017, SIAM J. Appl. Dyn. Syst..

[2]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[3]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[4]  Peter J. Schmid,et al.  Parametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systems , 2015 .

[5]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[6]  John L. Junkins,et al.  Observer/Kalman-Filter Time-Varying System Identification , 2010 .

[7]  John L. Junkins,et al.  Multi-Resolution Methods for Modeling and Control of Dynamical Systems , 2008 .

[8]  R. Kvaternik,et al.  A Computational Procedure for Identifying Bilinear Representations of Nonlinear Systems Using Volterra Kernels , 2008 .

[9]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[10]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[11]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[12]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[13]  Robert E. Skelton,et al.  Iterative identification and control using a weighted q-Markov cover with measurement noise , 1996, Signal Process..

[14]  Michel Verhaegen,et al.  A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems , 1995, Autom..

[15]  K. Park,et al.  Second-order structural identification procedure via state-space-based system identification , 1994 .

[16]  Thomas Kailath,et al.  Fast recursive identification of state space models via exploitation of displacement structure , 1994, Autom..

[17]  Frank H. Bauer,et al.  An application of the Observer/Kalman Filter Identification (OKID) technique to Hubble flight data , 1993 .

[18]  R. Skelton,et al.  Modeling Hubble Space Telescope Flight Data by Q-Markov Cover Identification , 1992, 1992 American Control Conference.

[19]  Richard W. Longman,et al.  Linear system identification via an asymptotically stable observer , 1991 .

[20]  Shahriar Shokoohi,et al.  Identification and model reduction of time-varying discrete-time systems , 1987, Autom..

[21]  B. Anderson,et al.  The generation of all q-Markov covers , 1987 .

[22]  Jan R. Wright,et al.  An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification , 1987 .

[23]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[24]  Karl Johan Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .

[25]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[27]  John L. Junkins,et al.  Time-Varying Eigensystem Realization Algorithm , 2010 .

[28]  Jer-Nan Juang,et al.  Generalized Bilinear System Identification , 2009 .

[29]  Jer-Nan Juang,et al.  Continuous-Time Bilinear System Identification , 2005 .

[30]  K S Narendra,et al.  Control of nonlinear dynamical systems using neural networks. II. Observability, identification, and control , 1996, IEEE Trans. Neural Networks.

[31]  莊哲男 Applied System Identification , 1994 .

[32]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[33]  Gordon K. F. Lee,et al.  Several recursive techniques for observer/Kalman filter system identification from data , 1992 .

[34]  James P. Crutchfield,et al.  Equations of Motion from a Data Series , 1987, Complex Syst..

[35]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .

[36]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[37]  G. GILBERTt CONTROLLABILITY AND OBSERVABILITY IN MULTIVARIABLE CONTROL SYSTEMS , 2022 .