3D assembly of semiconductor and metal nanocrystals: hybrid CdTe/Au structures with controlled content.

A 3D metal ion assisted assembly of nanoparticles has been developed. The approach relies on the efficient complexation of cadmium ions and 5-mercaptomethyltetrazole employed as the stabilizer of both colloidal CdTe and Au nanoparticles. It enables in a facile way the formation of hybrid metal-semiconductor 3D structures with controllable and tunable composition in aqueous media. By means of critical point drying, these assemblies form highly porous aerogels. The hybrid architectures obtained are characterized by electron microscopy, nitrogen adsorption, and optical spectroscopy methods.

[1]  Vladimir Lesnyak,et al.  Surface plasmon enhanced energy transfer between donor and acceptor CdTe nanocrystal quantum dot monolayers. , 2011, Nano letters.

[2]  H. Demir,et al.  Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. , 2011, ACS nano.

[3]  C. Sotiriou-Leventis,et al.  The effect of compactness on the carbothermal conversion of interpenetrating metal oxide/resorcinol-formaldehyde nanoparticle networks to porous metals and carbides , 2010 .

[4]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[5]  A. Eychmüller,et al.  CdTe nanocrystals capped with a tetrazolyl analogue of thioglycolic acid: aqueous synthesis, characterization, and metal-assisted assembly. , 2010, ACS nano.

[6]  N. Gaponik Assemblies of thiol-capped nanocrystals as building blocks for use in nanotechnology , 2010 .

[7]  A. Eychmüller,et al.  Self-Assembly of TGA-Capped CdTe Nanocrystals into Three-Dimensional Luminescent Nanostructures , 2010 .

[8]  P. Simon,et al.  Hydrogels and aerogels from noble metal nanoparticles. , 2009, Angewandte Chemie.

[9]  A. Eychmüller,et al.  Three‐Dimensional Self‐Assembly of Thiol‐Capped CdTe Nanocrystals: Gels and Aerogels as Building Blocks for Nanotechnology , 2008 .

[10]  T. Klar,et al.  Energy Transfer in Solution-Based Clusters of CdTe Nanocrystals Electrostatically Bound by Calcium Ions , 2008 .

[11]  H. Demir,et al.  Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling , 2008 .

[12]  J. Lakowicz,et al.  Fluorescence Quenching of CdTe Nanocrystals by Bound Gold Nanoparticles in Aqueous Solution , 2008, Plasmonics.

[13]  G. Armatas,et al.  Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters , 2007, Science.

[14]  N. Leventis Three-dimensional core-shell superstructures: mechanically strong aerogels. , 2007, Accounts of chemical research.

[15]  S. Brock,et al.  Sol-gel methods for the assembly of metal chalcogenide quantum dots. , 2007, Accounts of chemical research.

[16]  A. L. Bradley,et al.  Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots , 2006 .

[17]  A. Scherer,et al.  Surface plasmon enhanced light emission from CdSe quantum dot nanocrystals , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[18]  J. Lakowicz,et al.  Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. , 2006, Journal of the American Chemical Society.

[19]  S. Son,et al.  Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. , 2006, Journal of the American Chemical Society.

[20]  Tolga Atay,et al.  Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. , 2005, Nano letters.

[21]  S. Brock,et al.  Porous Semiconductor Chalcogenide Aerogels , 2005, Science.

[22]  W. E. Ford,et al.  Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. , 2004, Journal of the American Chemical Society.

[23]  Igor Nabiev,et al.  Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot−Nanogold Assemblies , 2004 .

[24]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[25]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[26]  A. Rogach,et al.  Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures , 2002 .

[27]  M. Bawendi,et al.  Surface-enhanced emission from single semiconductor nanocrystals. , 2002, Physical review letters.

[28]  R. Murray,et al.  Quenching of [Ru(bpy)3]2+ fluorescence by binding to Au nanoparticles , 2002 .

[29]  Mostafa A. El-Sayed,et al.  The Quenching of CdSe Quantum Dots Photoluminescence by Gold Nanoparticles in Solution¶ , 2002, Photochemistry and photobiology.

[30]  Uri Banin,et al.  Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy , 2002 .

[31]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .

[32]  Alexander Eychmüller,et al.  Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification , 1998 .

[33]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[34]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[35]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[36]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.